PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of the microstructure, microsegregation, and phase composition of ex-situ Fe–Ni–Cr–Al–Mo–TiCp composites fabricated by three-dimensional plasma metal deposition on 10CrMo9–10 steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quaternary powder mixtures yNi–20Cr–1.5Al–xTiCp (y = 78.5, 73.5, 68.5; x = 0, 5, 10) were deposited on ferritic 10CrMo9–10 steel to form on plates ex-situ composite coatings with austenitic-based matrix. Plasma deposition was carried out with various parameters to obtain eight variants. The microstructure, chemical composition, phase constitution, phase transformation temperatures, and microhardness of the two reference TiCp-free coatings and six ex-situ composites were investigated by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, thermodynamic simulation, and Vickers microhardness measurements. All composites had an austenite matrix with lattice parameter a = 3.5891–3.6062 Å, calculated according to the Nelson–Riley extrapolation. Microstructural observations revealed irregular distribution of TiCp in the composites. Large particles generally occurred near the external surface due to the acting buoyancy effect, whereas in the interior smaller particles, with an equivalent radius around 0.2–0.6 μm, were present. Due to initial differences in the chemical composition of powder mixtures and also subsequent intensive mixing with the low-alloy steel in the liquid pool, the matrix of the composites was characterized by various chemical compositions with a dominating iron concentration. Interaction of TiCp with matrix during deposition led to the formation of nano-precipitates of M23C6 carbides at the interfaces. Based on the ThermoCalc simulation, the highest solidus and liquidus temperatures of the matrix were calculated to be for the composite fabricated by deposition of 73.5Ni–20Cr–1.5Al–5TiCp powder mixture at I = 130 A. The mean microhardness of the TiCp-free coatings was in the range 138–146 μHV0.1, whereas composites had hardnesses at least 50% higher, depending on the initial content of TiCp.
Słowa kluczowe
Rocznik
Strony
437--455
Opis fizyczny
Bibliogr. 51 poz., fot., rys., wykr.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Kraków, Poland
autor
  • Chair of Welding Engineering, Chemnitz University of Technology, 09126 Chemnitz, Germany
  • Łukasiewicz Research Network, Kraków Institute of Technology, Zakopiańska 73, 30‑418 Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Kraków, Poland
autor
  • Chair of Welding Engineering, Chemnitz University of Technology, 09126 Chemnitz, Germany
autor
  • Investment Casting Division, Consolidated Precision Products, Hetmańska 120, 35‑078 Rzeszów, Poland
  • CEWUS Chemnitzer Werkstoff- Und Oberflächentechnik GmbH, Neefestraße 80a, 09119 Chemnitz, Germany
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30‑059 Kraków, Poland
autor
  • Department of Mechanical Engineering, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany
Bibliografia
  • [1] Lemos G, Márcio C, Pyczak F, Tetzlaff U. Development of a TiCp reinforced Ni-based superalloy MMC, with high creep resistance and reduced weight. Key Eng Mater. 2017;742:189–96. https ://doi.org/10.4028/www.scien tific .net/KEM.742.189.
  • [2] Sahu P, Banchhor R. Fabrication methods used to prepare Al metal matrix composites-a review. Int Res J Eng Technol. 2016;3(10):123–32.
  • [3] Yang X, Li X, Yang Q, Wei H, Fu X, Li W. Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings. Surf Coat Technol. 2020;385:1–9. https ://doi.org/10.1016/j.surfc oat.2020.12535 9.
  • [4] Tomków J, Czupryński A, Fydrych D. The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions. Coatings. 2020;10(3):219. https ://doi.org/10.3390/coati ngs10 03021 9.
  • [5] Shabani A, Toroghinejad M. Study on texture evolution and shear behavior of an Al/Ni/Cu composite. J Mater Eng Perform. 2018;27(11):6004–155. https ://doi.org/10.1007/s11665-018-3692-0.
  • [6] Gu D, Zhang H, Dai D, Xia M, Hong C, Poprawe R. Laser additive manufacturing of nano-TiC reinforced Ni-based nanocomposites with tailored microstructure and performance. Campos Part B. 2019;163:585–97. https ://doi.org/10.1016/j.compo sites b.2018.12.146.
  • [7] Hoefer K, Nitsche A, Haelsing A, Mayr P. Manufacturing of titanium components with 3DPMD. Metals. 2019;9(5):562. https ://doi.org/10.3390/met90 50562 .
  • [8] Rakoczy Ł, Grudzień-Rakoczy M, Cygan R. The influence of shell mold composition on the as-cast macro- and micro-structure of thin-walled IN713C superalloy castings. J Mater Eng Perform. 2019;28:3974–85. https ://doi.org/10.1007/s1166 5-019-04098 -9.
  • [9] Rakoczy Ł, Cygan R. Analysis of temperature distribution in shell mould during thin-wall superalloy casting and its effect on the resultant microstructure. Arch Civ Mech Eng. 2018;18:1441–500. https ://doi.org/10.1016/j.acme.2018.05.008.
  • [10] Epishin A, Link T, Noltze G, Svetlov I, Bokshtein B, Rodin A, Salivan-Neumann R, Oder G. Diffusion processes in multicomponent nickel-base superalloy-nickel system. Phys Met Metall. 2014;115:21–9. https ://doi.org/10.1134/S0031 918X1 40100 50.
  • [11] Masoudi M, Hashim M, Kamari H. Characterization of novel Ni–Al2O3–SiC nanocomposite coatings synthesized by coelectrodeposition. Appl Nanosci. 2014;4:649–56. https ://doi.org/10.1007/s1320 4-013-0250-9.
  • [12] Olejnik E, Szymanski Ł, Tokarski T, Opitek B, Kurtyka P. Local composite reinforcements of TiC/FeMn type obtained in situ in steel castings. Arch Civ Mech Eng. 2019;19:997–1005. https ://doi.org/10.1016/j.acme.2019.05.004.
  • [13] Balasubramanian K, Kroupa A, Kirkaldy J. Experimental investigation of the thermodynamics of the Fe-Ti-C austenite and the solubility of titanium carbide. Metall Trans A. 1992;23:709–27.https ://doi.org/10.1007/BF026 75550.
  • [14] Rodriguez J, Hoefer K, Haelsing A, Mayr P. Functionally graded SS 316L to Ni-based structures produced by 3D plasma deposition. Metals. 2019;9(6):620. https ://doi.org/10.3390/met9060620.
  • [15] Mortensen A, Cornie J, Flemmings M. Solidification processing of metal-matrix composites. J Met. 1988;40:12–9.
  • [16] Grudzień-Rakoczy M, Rakoczy Ł, Cygan R, Kromka F, Pirowski Z, Milkovic O. Fabrication and characterization of the newly developed superalloys based on Inconel 740. Materials. 2020;13(10):2362. https ://doi.org/10.3390/ma131 02362.
  • [17] Szala M, Hejwowski T. Cavitation erosion resistance and wear mechanism model of flame-sprayed Al2O3–40%TiO2/NiMoAl cermet coatings. Coatings. 2018;8(7):254. https ://doi.org/10.3390/coati ngs80 70254.
  • [18] Li S, Kondoh K, Imai H, Chen B, Jia L, Umeda J, Fu Y. Strengthening behavior of in situ-synthesized (TiC-TiB)/Ti composites by powder metallurgy and hot extrusion. Mater Des. 2016;95:127–32. https ://doi.org/10.1016/j.matde s.2016.01.092.
  • [19] Singh H, Hayat M, Zhang H, Das T, Cao P. Effect of TiB2 content on microstructure and properties of in is situ Ti–TiB composites. Int J Miner Metall Mater. 2019;26(7):915–24. https ://doi.org/10.1007/s1261 3-019-1797-6.
  • [20] Arsenault R, Fishman S, Taya M. Deformation and fracture behavior of metal-ceramic matrix composite materials. Progress Mater Sci. 1994;38:1–157. https ://doi.org/10.1016/0079-6425(94)90002 -7.
  • [21] Feldshtein E, Dyachkova L, Królczyk G. On the evaluation of certain strength characteristics and fracture features of iron-based sintered MMCs with nanooxide additives. Mater Sci Eng A. 2019;756:455–63. https ://doi.org/10.1016/j.msea.2019.04.044.
  • [22] Rutecka A, Kowalewski Z, Pietrzak K, Dietrich L, Makowska K, Woźniak J, Kostecki M, Bochniak W, Olszyna A. Damage development of Al/SiC metal matrix composite under fatigue, creep and monotonic loadic condition. Proc Eng. 2011;10:1420–5. https ://doi.org/10.1016/j.proen g.2011.04.236.
  • [23] Karabulut Ş, Gökmen U, Çinicic H. Study on the mechanical and drilling properties of AA7039 composites reinforced with Al2O3/B4C/SiC particles. Compos B Eng. 2016;93(15):43–55. https ://doi.org/10.1016/j.compo sites b.2016.02.054.
  • [24] Feldshtein E, Kardapolava M, Dyachenko O. On the effectiveness of multi-component laser modifying of Fe-based self-fluxing coating with hard particulates. Surf Coat Technol. 2016;307:254–61. https ://doi.org/10.1016/j.surfcoat.2016.08.068.
  • [25] Asthana R, Mileiko S, Sobczak N. Wettability and interface considerations in advanced heat-resistant Ni-base composites. Bull Pol Acad Sci Tech Sci. 2006;54(2):147–66.
  • [26] Kvashnin D, Firestein K, Popov Z, Corthay S, Sorokin P, Golberg D, Shtansky D. Al–BN interaction in a high-strength lightweight Al/BN metal-matrix composite: theoretical modelling and experimental verification. J Alloys Compd. 2019;782:875–80. https ://doi.org/10.1016/j.jallc om.2018.12.261.
  • [27] Zhang B, Bi G, Nai S, Sun C, Wei J. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting. Opt Laser Technol. 2016;80:186–95. https ://doi.org/10.1016/j.optla stec.2016.01.010.
  • [28] Durlu N. Titanium carbide based composites for high temperature applications. J Euro Ceram Soc. 1998;19(13–14):2415–9. https ://doi.org/10.1016/S0955 -2219(99)00101 -6.
  • [29] Storms EK. The refractory carbides. New York: Academic Press; 1967.
  • [30] Mathe B. Surface Brillouin scattering studies of elastic properties of materials at high temperature, Ph.D. thesis. University of Witwatersrand; 2009.
  • [31] Nelson JB, Riley DP. An experimental investigation of extrapolation methods in the derivation of accurate unit-cell dimensions of crystals. Proc Phys Soc. 1945;57:160–77. https ://doi.org/10.1088/0959-5309/57/3/302.
  • [32] Clementi E, Raimondi DL, Reinhardt WP. Atomic screening constans from SCF functions. II. Atoms with 37 to 86 electrons. J Chem Phys. 1967;47:1300–7. https ://doi.org/10.1063/1.17120 84.
  • [33] Arsenault R, Feng C, Wang L. Localized deformation of SiCAl composites. Mater Sci Eng A. 1991;131:55–68.
  • [34] Kou S. Welding metallurgy. 2nd ed. New Jersey: Wiley; 2003.
  • [35] Lide DR. CRC handbook of chemistry and physics. 85th ed. Boca Raton: CRC Press; 2004.
  • [36] Mortensen A. Interfacial phenomena in the solidification processing of metal matrix composites. Mater Sci Eng A. 1991;135(30):1–11. https ://doi.org/10.1016/0921-5093(91)90527-T.
  • [37] Ahmed M, Fjellvag H, Kjekshus A. Syntheses and crystal structure of titanium oxide sulfates. Acta Chem Scand. 1996;50:275–83. https ://doi.org/10.3891/acta.chem.scand .49-0457.
  • [38] Bowman A, Arnold G, Storms E, Nereson N. The crystal structure of Cr23C6. Acta Cryst. 1972;B28:3102–3. https ://doi.org/10.1107/S0567 74087 20075 26.
  • [39] Davis JR. ASM specialty handbook: Heat-resistant materials. ASM International; 1997. ISBN: 978-0-87170-596-9.
  • [40] Qin X, Guo J, Yuan C, Chen C, Hou J, Ye H. Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy. Mater Sci Eng A. 2008;485(1–2):74–9. https ://doi.org/10.1016/j.msea.2007.07.055.
  • [41] Rakoczy Ł, Grudzień-Rakoczy M, Cygan R. Influence of meltpouring temperature and composition of primary coating of shell mold on tensile strength and creep resistance of Ni-based superalloy. J Mater Eng Perform. 2019;28(7):3826–34. https ://doi.org/10.1007/s1166 5-018-3853-1.
  • [42] Rakoczy Ł, Milkovic O, Rutkowski B, Cygan R, Grudzień-Rakoczy M, Kromka F, Zielińska-Lipiec A. Characterization of γ′ precipitates in cast Ni-based superalloy and their behaviour at high-homologous temperatures studied by TEM and in situ XRD. Materials. 2020;13(10):2397. https ://doi.org/10.3390/ma13102397 .
  • [43] Lvov G, Levit V, Kaufman N. Mechanism of primary MC carbide decomposition in Ni-base superalloys. Metall Mater Trans. 2004;35:1669–79. https ://doi.org/10.1007/s1166 1-004-0076-x.
  • [44] Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr. 2011;44:1272–6. https ://doi.org/10.1107/S0021 88981 10389 70.
  • [45] Wu H, Hong Y. Microstructure and mechanical properties at TiCp/Ni-alloy interfaces in laser-synthesized coatings. Mater Sci Eng A. 2001;318:15–211. https ://doi.org/10.1016/S0921 -5093(01)01394 -6.
  • [46] Janas A, Kolbus A, Olejnik E. On the character of matrixreinforcing particle phase boundaries in MeC and MeB (Me = W, Zr, Ti, Nb, Ta) in-situ composites. Arch Metall Mater. 2009;54(2):319–27.
  • [47] Schaeffler A. Constitution diagram for stainless steel weld metal. Metal Prog. 1949;56(11):680–680B.
  • [48] Jiang D, Hong C, Zhong M, Alkhayat M, Weisheit A, Gasser A, Zhang H, Kelbassa I, Poprawe R. Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control. Surf Coat Technol. 2014;249:125–31. https ://doi.org/10.1016/j.surfcoat.2014.03.057.
  • [49] Saroj S, Sahoo CK, Tijo D, Kumar K, Masanta M. Sliding abrasive wear characteristic of TIG cladded TiC reinforced Inconel825 composite coating. Inter J Refract Met Hard Mater. 2017;69:119–30. https ://doi.org/10.1016/j.ijrmh m.2017.08.005.
  • [50] Wilson JM, Shin YC. Microstructure and wear properties of laserdeposited functionally graded Inconel 690 reinforced with TiC. Surf Coat Tech. 2012;207:517–22. https ://doi.org/10.1016/j.surfcoat.2012.07.058.
  • [51] Doǧan ÖN, Hawk JA, Tylczak JH, Wilson RD, Govier RD. Wear of titanium carbide reinforced metal matrix composites. Wear. 1999;225–229 758–69. https ://doi.org/10.1016/S0043-1648(99)00030 -7.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b1cb7bd-84d8-4032-a930-b8d108aba7e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.