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 Lukasz LACHOWSKI

ON THE COMPLEXITY OF THE STANDARD

TRANSLATION OF LAMBDA CALCULUS

INTO COMBINATORY LOGIC

A b s t r a c t. We investigate the complexity of the standard

translation of lambda calculus into combinatory logic. The main

result shows that the asymptotic growth rate of the size of a trans-

lated term is Θ(n3) in worst-case, where n denotes the size of the

lambda term.

.1 Introduction

Both lambda calculus ([Chu36]) and combinatory logic ([Cur30]) are Turing-

complete models of computation. As such, lambda calculus serves as a the-
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oretical basis for many functional programming languages, e.g. Haskell and

SML. Evaluating expressions in lambda calculus is not easy since semantics

of the substitution must be defined carefully to avoid problems with vari-

ables binding. One of the motivations for introducing combinatory logic

was to eliminate the notion of bound variables from logical formulas and to

simplify the definition of substitution. Thereby, compared to lambda calcu-

lus, combinatory logic is simpler in terms of computational interpretations.

In the definition of combinatory logic we use only two combinators,

namely S and K. Together with the notion of reduction, it is sufficient to

define any recursive function in this model. Details regarding the relation of

lambda calculus and combinatory logic can be found in [Bar12, page 151].

The question that immediately arises is how to reformulate computations

defined in lambda calculus by means of combinatory logic and what the

complexity of this process is. The standard translation is one of the basic

algorithms providing extensional equivalence of these models. We believe it

was first defined in [Sch24]. Unfortunately, we were unable to find a detailed

analysis of its worst-case complexity. In the literature other translations

have been studied (see [Tur79; BD97; KS87; Nos85; Joy85]). In this work

we focus on providing the asymptotic growth rate of the size of a lambda

term translated using the standard translation.

We start with some basic definitions concerning both lambda calcu-

lus and combinatory logic and define the standard translation. Next, we

present an upper bound for the size of combinators that are translations

of lambda terms of a fixed size. We do not search for a particular set of

worst-case instances of this algorithm, but rather focus on finding some

specific set that contains all translations of λ-terms of a given size and for

which we are able to calculate the size limit of its elements. In the next

section we describe how the translation behaves on a specific class of terms,

obtaining as well a lower bound of the worst-case behavior. Our method

can be easily adapted to other translations, e.g. the one defined by David

Turner in [Tur79].

Definition 1.1 (lambda terms). Assume we have a countable set of

variables V := {x, y, . . . }. The set Λ of λ-terms is defined by the following

grammar:

Λ := V | (λV.Λ) | (ΛΛ)



COMPLEXITY OF THE STANDARD TRANSLATION OF LAMBDA CALCULUS 21

Definition 1.2 (combinatory logic terms). Assume we have a countable

set of variables V := {x, y, . . . }. The set CL of combinatory logic terms,

called CL-terms or combinators, is defined by the following grammar:

C := V | K | S | (C C)

Notation. (i) The symbol ≡ denotes the syntactic equality of λ-

terms or combinators.

(ii) Outermost parentheses are usually omitted.

(iii) Application associates to the left, e.g. ABCD stands for ((AB)C)D.

(iv) Lower-case letters x, y, z, . . . denote variables.

(v) Abstraction associates to the right, e.g. λxyz.M stands for

λx.(λy.(λz.M)).

(vi) We denote arbitrary combinators by letters P , Q, R, . . . and λ-terms

by M , N , O, . . ..

(vii) Constant I denotes both SKK and λx.x, depending on the context

in which it is used.

(viii) In the context of lambda calculus, the constant K denotes λxy.x.

Before we describe the complexity of the translation we need the notion

of size for both λ- and CL-terms.

Definition 1.3. We define notions of size for both λ- and CL-terms.

(i) Size of a lambda term M , denoted by |M |λ, is inductively defined as

follows:

|x|λ = 1 for every variable x,

|MN |λ = 1 + |M |λ + |N |λ,
|λx.M |λ = 1 + |M |λ.

(ii) Size of a combinatory logic term P , denoted by |P |CL, is inductively

defined as follows:

|S|CL = |K|CL = |x|CL = 1 for every variable x,

|PQ|CL = 1 + |P |CL + |Q|CL.
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We can interpret CL-terms as labeled binary trees, where inner nodes

represent applications and labeled leaves stand for variables or constants

(see Figure 1). In this interpretation, the size of a combinator corresponds

to the total number of its leaves and internal nodes. Before we introduce

the standard translation, we also need to define notions of free variables for

both of these models.

Definition 1.4. (i) The set of free variables of a lambda term M ,

denoted FVλ(M), is defined inductively as follows:

FVλ(x) = {x} for every variable x,

FVλ(MN) = FVλ(M) ∪ FVλ(N),

FVλ(λx.M) = FVλ(M) \ {x}.

(ii) We call a lambda abstraction λx.M binding if x ∈ FVλ(M), otherwise

it is called non-binding.

(iii) In the case of combinatory logic, the set of free variables of a combi-

nator P , denoted FVCL(P ), is defined as collection of all of its variables.

(iv) We call a CL-term closed if it contains no free variables. By CL0 we

denote the set of all closed CL-terms.

Both λ- and CL-terms can be equipped with notion of reduction. On

the set of λ-terms we define relation called β-reduction and for CL-terms

a corresponding notion of w-reduction. For details see [Bar12, pages 50 and

154].

Definition 1.5. On the set of lambda terms we define the reduction

relation →β as the smallest relation such that:

• For all λ-terms M and N we have (λx.M)N →β M [x := N ], where

M [x := N ] denotes substitution of every occurrence of the variable x in M

by the term N . During this process we must avoid capturing free variables

of the term N by some lambda abstractions of M . We can avoid this by

changing names of bound variables of the term M prior to application of

this rule.

• For all λ-terms M,N and O, and for every variable x, if M →β N ,

then we also have MO →β NO, OM →β ON and λx.M →β λx.N .



COMPLEXITY OF THE STANDARD TRANSLATION OF LAMBDA CALCULUS 23

The relation =β is the smallest equivalence relation containing →β.

Definition 1.6. We define the reduction relation →w on the set of

CL-terms as the smallest relation such that:

• For all combinators P , Q and R we have KPQ→w P and SPQR→w

PR(QR).

• For all combinators P , Q and R, if P →w Q, then we also have PR→w

QR and RP →w RQ.

Similarly to the previous definition, by =w we denote the equivalence clo-

sure of the relation →w.

After examining semantics of both these definitions, it turns out that

lambda abstraction can be simulated by S and K in combinatory logic. We

call this process bracket abstraction.

Definition 1.7. For every variable x we define a function λ∗x : CL →
CL, called bracket abstraction, as follows:

λ∗x.x = SKK,

λ∗x.P = KP if x 6∈ FVCL(P ),

λ∗x.PQ = S (λ∗x.P ) (λ∗x.Q) if x ∈ FVCL(PQ).

Fact 1.8. (i) FVCL(λ∗x.P ) = FVCL(P ) \ {x}

(ii) (λ∗x.P )x =w P

(iii) (λ∗x.P )Q =w P [x := Q]

Once we have a mechanism capable of simulating variable abstraction, we

can use it to obtain a mapping between terms of Λ and CL. In the following

sections, we focus on showing what the complexity of this algorithm is.

Definition 1.9. The standard translation [ ] : Λ → CL is defined

inductively as follows:

[ x ] = x for every variable x,

[ MN ] = [ M ] [ N ],

[ λx.M ] = λ∗x.[ M ].
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Example 1. Let us translate term M ≡ λxy.xy.

[ λxy.xy ] =λ∗x.λ∗y.xy

=λ∗x.S(Kx)(SKK)

=S(λ∗x.S(Kx))(K(SKK))

=S(S(KS)(S(KK)(SKK)))(K(SKK))

We see that the size of the term M is 5 and the size of its translation is

equal to 27.

λx

λy

x y

(a) λxy.xy

S
K x S K

K

(b) λ∗y.xy.

S

S
K S

S
K K S K

K

K

S K
K

(c) [ λxy.xy ] = λ∗x.λ∗y.xy

Figure 1: Visualization of some consecutive steps of the translation algo-

rithm for the term λxy.xy.

Remark 1.10. Two terms which are equal up to renaming of bound

variables are translated into the same combinator. Moreover, if two terms

differ only by their free variables, then their CL counterparts have the same

size.

We also define a method of translating CL-terms into lambda calculus.

Using both these translations, we can prove that every term of lambda
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calculus can be defined (up to =β relation) by means of K ≡ λxy.x and

S ≡ λxyz.xz(yz).

Definition 1.11. The translation of CL-terms into lambda calculus is

defined as follows:

( x )Λ = x for every variable x,

( K )Λ = λxy.x,

( S )Λ = λxyz.xz(yz),

( PQ )Λ = ( P )Λ ( Q )Λ.

Fact 1.12. (i) For every λ-term M we have ( [ M ] )Λ =β M .

(ii) For all CL-terms P and Q, if P =wQ, then ( P )Λ =β ( Q )Λ.

Unfortunately, the reverse composition does not preserve equality of

CL-terms, which we show in the following example.

Example 2. Composition of ( )Λ and [ ] is not an identity of CL-terms

(up to =w relation), e.g. [ ( K )Λ ] = S(KK)I 6=w K. Moreover, equiv-

alence =β of some λ-terms does not imply equivalence =w of their trans-

lations, e.g. λx.KIx =β λx.I, but [ λx.KIx ] = S(K(S(KK)II))I =w

S(K(KI))I 6=w KI = [ λx.I ].

One way to fix this inconvenience is to extend →β and →w by the rule

of extensionality.

Definition 1.13 (Rule of Extensionality). By symbol →ext
@A we denote

extended relation →@A satisfying the following rule (symbol @A is to be

replaced with w or β, respectively): if x is not a free variable of M or N

and we have Mx→ext
@A Nx, then we can infer M →ext

@A N . By =ext
@A we denote

the equivalence closure of the relation →ext
@A .

With this additional rule we are able to prove that these models are

equivalent in the following sense.

Fact 1.14. (i) The composition of translations ( )Λ and [ ] preserves

equivalence =ext
w , i.e. [ ( P )Λ ] =ext

w P .

(ii) For all λ-terms M and N , if M =ext
β N , then we can infer that

[ M ] =ext
w [ N ].
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.2 Complexity of the standard translation

Our main result states that using the standard translation the worst-case

asymptotic growth rate of the size of a translated λ-term is Θ(n3), where

n denotes the size of the λ-term. We introduce a function that computes

the upper bound for the translation size as follows:

SizeT(n) := sup {| [ M ] |CL : M ∈ Λ, |M |λ = n}.

Although the set of λ-terms of a given size is of infinite cardinality, by Re-

mark 1.10 it is sufficient to consider only some specific finite set of terms.

Hence, the supremum is always finite and SizeT(n) is a well defined func-

tion. By means of a Haskell program ([Lac17]) we can enumerate first few

values of this function:

1, 5, 11, 17, 27, 37, 47, 65, 79, 101, 123, 141, 179, 205, 235, 285, . . .

Since SizeT(5) = 27, we see that the term λxy.xy, used in Example 1, is

a witness of the worst-case behavior.

First, for any given size n, we focus on finding an upper bound for

the value of the function SizeT(n). To this end, we define some specific

family of sets of CL-terms and show that for any λ-term, its corresponding

combinator belongs to one of those sets. Using their inductive definition

we are able to calculate an upper bound for all translated terms. To find

a lower bound, we study some specific class of λ-terms for which it is easy

to analyze how the algorithm changes their size. As it turns out, the growth

rate estimated in the first part is asymptotically tight (up to a constant).

.2.1 Upper bound

We need some additional tools to calculate an upper bound of the function

SizeT(n) for every value of n. For a collection of all λ-terms of a given

size n, we define a superset of the set of all translated forms of these terms

for which we are able to calculate the size of the largest term among its

elements. More formally, we look for a set, denoted by Tn, fulfilling the

following conditions:

{[ M ] : M ∈ Λ, |M |λ = n} ⊆ Tn,

sup {|P |CL : P ∈ Tn} ≤ P (n) where P (n) is some polynomial of n.
(3)
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Then, instead of searching for an upper bound of the function SizeT(n), we

estimate the supremum for the size of all terms of the set Tn, i.e. SizeT(n) ≤
sup {|M |CL : M ∈ Tn}. The following definition is crucial for proving our

result.

Definition 2.1. For all positive integers n, j and k, such that j ≤ n,

we inductively define sets of combinatory logic terms denoted by symbol

Cn, j, k as follows:

(i) for every n ≥ 1 the constant K and every variable are elements of the

set Cn, 1, 1,

(ii) if a combinator Q is an element of the set Cn, j, k such that j < n and

P is a closed combinator such that |P |CL < 2n, then the combinator PQ is

in Cn, j+1, k,

(iii) if combinators P and Q are elements of sets Cn, j1, k1 and Cn, j2, k2 re-

spectively, then the combinator PQ belongs to the set Cn, 1, k1+k2+1.

By carefully examining both this definition and of the translation we can

notice how they are related. As it will be revealed in the following propo-

sitions, the second case of this definition corresponds to terms of the form

S(λ∗x.P ) and KP created by the bracket abstraction and their further de-

velopment during the translation process. Similarly, the third case of this

definition coincides with terms of the form (S(λ∗x.P ))(λ∗x.Q) and [ P ][ Q ]

created by the translation.

It is worth noting that some of the combinators can be derived in more

than one way, e.g. term (SK)K belongs both to the set C2, 2, 1 as well as to

C2, 1, 3. We can also find combinators which do not belong to any of these

sets, e.g. KS.

Terms of a set Cn, j, k can be presented as colored trees (see Figures

3 and 5). In this interpretation, each of the parameters n, j and k de-

scribes some quantitative property of that colored representation. That

is to say, the parameter k determines how many distinct colors we have

used and the parameter j allows us to bound the number of nodes with the

same color as the root of a tree. Value of the parameter n determines the

maximal number of nodes sharing each color. Each case of Definition 2.1
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∀n > 0 K ∈ Cn, 1, 1
x ∈ V

∀n > 0 x ∈ Cn, 1, 1

P ∈ CL0 Q ∈ Cn, j, k j < n |P |CL < 2n

PQ ∈ Cn, j+1, k

P ∈ Cn, j1, k1 Q ∈ Cn, j2, k2
PQ ∈ Cn, 1, k1+k2+1

Figure 2: Definition 2.1 presented by a diagram.

C3, 1, 3

C3, 3, 1

S C3, 2, 1

CL0

S K

K

C3, 2, 1

K x

Figure 3: Colored tree representation of a combinator from the set C3, 1, 3.

describes a method of constructing colored trees representing elements of

the set Cn, j, k. According to its first case, we can pick up any variable or

the constant K as the basis of our tree and paint it by any color. The

second case describes how we can extend a colored combinator by attach-

ing a closed term of the same color as its root. Having a tree with its

root painted e.g. red, and with the value of the parameter j still smaller

than n, we can pick up any closed term Q of size limited by |Q|CL < 2n,

paint all of its nodes using red color, and attach it to the original tree by

a new red binary node. Afterwards, we increase the value of the param-

eter j, marking that the number of red nodes has been increased. From

this, we see that when the value of j is 1, then there is no other node

with the same color as the root and that n limits the number of nodes of

each color. The last case of this definition specifies a method for merging

two colored representations. Namely, having two colored trees P and Q,

which have no color in common, we can combine them using a binary node

with a brand new color. This forces us to increase the value of k by 1.
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After this procedure, the new root is the only one using that new color,

therefore the value of j equals 1. Two such trees can be merged only if

they belong to sets parametrized by the same value of n. Thanks to that

restriction, the meaning of the parameter n remains valid throughout the

construction. Using this representation, the following propositions can be

interpreted as a way of finding some bounds for the number of colors and

the number of nodes of each color which are, needed to paint a translated

λ-term. The main result shows that for a λ-term of size n we can paint its

translation using no more than n colors and having no more than O(n2)

nodes of each of these colors.

For any fixed values of parameters j and k we can easily infer that the

sequence (Cn, j, k)n is an ascending sequence of sets.

Observation 2.2. For all positive integers n, j, k and l we have Cn, j, k ⊂
Cn+l, j, k.

This observation is useful whenever we want to extend a particular color

in a combinator, but the value of its parameter n limits this possibility.

More precisely, if for an element of a set Cn, j, k we have already attached n

closed terms of the same color as its root node, then whenever we want to

build a bigger term from it without using a new color, we can simply choose

a greater value for the parameter n and then enlarge the term according

to Definition 2.1. We can also use it when we need to merge two terms

with different values of n. This is possible since at the beginning of the

construction of some colored combinator, the first case of the definition

allows us to pick n arbitrarily large. The rest of the derivation of that

term stays unchanged. Given a combinator P , being a translation of some

λ-term, we are interested in minimizing the value of n for which P ∈ Cn, j, k,

since this value limits the number of nodes of each color.

The standard translation describes a bottom-up approach for which the

most computationally demanding operation is a variable abstraction. The

next two propositions show the approximate cost of simulating variable

abstraction on an element of a set Cn, j, k.

Proposition 2.3. Given a combinator P ∈ Cn, j, k and a variable x not

occurring in P , the combinator λ∗x.P is an element of the set Cn+1, j+1, k.

Proof. If we use the bracket abstraction for the variable x which is not

free in P , we simply apply term P to the constant K. In order to do this,
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we may need a greater value for the parameter n. By Observation 2.2, we

know that P ∈ Cn, j, k ⊂ Cn+1, j, k. Since |K|CL = 1 < 2(n + 1) for every

n ≥ 1 and value of the parameter j is strictly smaller than n+ 1, we have

λ∗x.P = KP ∈ Cn+1, j+1, k. �

Cn, 1, k

Cn, j1, k1 Cn, j2, k2

(a) P ≡ QR, where Q ∈ Cn, j1, k1

and R ∈ Cn, j2, k2
. Abstracted

variable x occurs only in term R.

Cn+2, 1, k

Cn+2, j1+2, k1

S

K Cn+2, j1, k1

Cn+2, j′2, k2

(b) λ∗x.MN

Figure 4: A term before and after applying the bracket abstraction.

Proposition 2.4. For every combinator P ∈ Cn, j, k and for every vari-

able x that is free in P , the combinator λ∗x.P is an element of the set

Cn+2, j′, k with j′ = j or j′ = j + 1.

Proof. The proof goes by induction on the derivation of a term P

from a set Cn, j, k.

(i) If P is in Cn, 1, 1 and a variable x occurs in P , then P ≡ x. Using the

definition of bracket abstraction and Observation 2.2 we obtain λ∗x.x =

(SK)K ∈ C2, 2, 1 ⊂ Cn+2, 2, 1 for every n.

(ii) Let P ∈ Cn, j, k be of the form QR where R ∈ Cn, j−1, k for which

j − 1 < n and Q is a closed term such that |Q|CL < 2n. Since x occurs

in P and Q is a closed combinator, we derive that x occurs in R. Using

the definition of the bracket abstraction, we get λ∗x.QR = S(KQ) (λ∗x.R).

We use the induction hypothesis for the term R ∈ Cn, j−1, k and obtain that

λ∗x.R ∈ Cn+2, j′, k for some j′ such that j′ = j − 1 or j′ = j. Term Q is

closed, therefore S(KQ) is also closed and we have

|S(KQ)|CL = |Q|CL + 4 < 2(n+ 2).
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From this, we see that the combinator λ∗x.P is in Cn+2, j′+1, k.

(iii) Let P ∈ Cn, 1, k be of the formQR, whereQ ∈ Cn, j1, k1 andR ∈ Cn, j2, k2
are such that k1 + k2 + 1 = k (see Figure 4). From the definition of bracket

abstraction we have λ∗x.P = S (λ∗x.Q) (λ∗x.R). If the abstracted variable

occurs in Q, then we can use the induction hypothesis to obtain λ∗x.Q ∈
Cn+2, j′1, k1

such that j′1 = j1 or j′1 = j1 + 1. Otherwise, we use Proposi-

tion 2.3 to get λ∗x.Q ∈ Cn+1, j′1, k1
⊂ Cn+2, j′1, k1

where j′1 = j1+1. We notice

that in both cases j′1 < n + 2 and hence we can still attach the constant

S to λ∗x.Q. By Definition 2.1 we have S(λ∗x.Q) ∈ Cn+2, j′1+1, k1 . Using

similar argument for R we see that λ∗x.R is in Cn+2, j′2, k2
for some j′2 = j2

or j′2 = j2 + 1. By Definition 2.1 we obtain that λ∗x.P = S(λ∗x.Q)(λ∗x.R)

is an element of Cn+2, 1, k. �

The last two propositions have a simple interpretation using colored

trees represantation. The former claims that if we use the bracket abstrac-

tion for a variable that does not occur in a given term, then we need to

attach a new closed term, namely the constant K, of the same color as

the root. The value of the parameter n limits the number of such closed

terms, so we might need to increase it too. After this operation the size of

a term changes marginally. The latter one, which removes all occurrences

of a given variable, has a greater impact on the size. In this case the inter-

pretation is such that for every color we attach maximally two new closed

terms of that color and enlarge remaining closed terms of that color by at

most 4 new nodes. Using these propositions we can also conclude a method

of coloring combinators. Prior to translation we can paint every node of a

term by a unique color. Then we assume that during the translation pro-

cess only the bracket abstraction can create new colored nodes. Whenever

it creates a new constant, it attaches it to an already painted term. This

new constant, together with the newly created binary node, inherits the

color of that term. Representing the color of a term by an upper index

attached to a combinator (e.g. P a), we can redefine bracket abstraction

as follows: λ∗x.(P aQb)c = ((Saλ∗x.P a)a(λ∗x.Qb)b)c, λ∗x.Ma = (KaMa)a,

λ∗x.xa = ((SaKa)aKa)a. This method of coloring corresponds to the way

in which we accounted newly created combinators in last two propositions.

In the next proposition we show that every combinator which is a trans-

lation of some λ-term belongs to one of the sets Cn, j, k.
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Proposition 2.5. Let M be a λ-term of size n with b binding and

c non-binding lambda abstractions. Then [ M ] is an element of the set

C2b+c+1, j, n−(b+c), for some j such that j ≤ b+ c+ 1.

Proof. The proof goes by induction on the structure of term M from Λ.

(i) If M is a variable, say x, then we have |x|λ = 1 and [ x ] = x ∈ C1, 1, 1.

(ii) Let M be an abstraction λx.N where |N |λ = n − 1 and N has b

binding and c non-binding abstractions. By the definition of the translation,

[ M ] equals λ∗x.[ N ]. Using the induction hypothesis for N , we have

[ N ] ∈ C2b+c+1, j, k for k = n− 1− (b+ c) and some j such that j ≤ b+c+1.

If x does not occur in [ N ], we use Proposition 2.3 and obtain that λ∗x.[ N ]

belongs to the set C2b+(c+1)+1, j+1, k. Otherwise, when x occurs in [ N ], by

Proposition 2.4 we get λ∗x.[ N ] ∈ C2(b+1)+c+1, j′, k with j′ = j or j′ = j+ 1

and so we have j′ ≤ (b+ 1) + c+ 1.

(iii) LetM be an applicationNO, where |N |λ = n1, |O|λ = n2 and |NO|λ =

n = 1 +n1 +n2. We assume that term M has b binding and c non-binding

lambda abstractions. Since it is an application all of its abstractions are

sub-terms of N and O. Let b1 and c1 denote respectively the number of

binding and non-binding abstractions of N . Similarly, we define b2 and

c2 for term O. From the definition of the standard translation we have

[ M ] = [ N ] [ O ]. Using the induction hypothesis for both N and

O we see that [ N ] ∈ C2b1+c1+1, j1, k1 and [ O ] ∈ C2b2+c2+1, j2, k2 such

that k1 = n1 − (b1 + c1) and k2 = n2 − (b2 + c2). From this we obtain that

k1 +k2 = n1 +n2−(b1 +b2 +c1 +c2) = n−1−(b+c). Since both 2b1 +c1 +1

and 2b2 + c2 + 1 are bounded by 2b+ c+ 1, we can use Observation 2.2 and

obtain that [ N ] [ O ] is in C2b+c+1, 1, n−(b+c). �

Now we know that the translation of a λ-term of size n belongs to the

set C2b+c+1, j, n−(b+c) for some j ≤ b+c+1, where b and c denote the number

of its binding and non-binding abstractions respectively. Using Observa-

tion 2.2, in order to find an upper limit for the size of that translation,

we need to find the value of the expression 2b + c + 1 in the definition of

C2b+c+1, j, n−(b+c) (size n is fixed).

Observation 2.6. Let M be a λ-term of size |M |λ = n > 2 with b

binding and c non-binding abstractions. Since each bound variable must
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λx

λy

C1, 1, 3

y x

(a) λxy.yx

C3, 1, 3

C3, 3, 1

S C3, 2, 1

S K

K

C3, 2, 1

K x

(b) λ∗y.yx

C5, 1, 3

C5, 5, 1

S C5, 4, 1

K C5, 3, 1

S C5, 2, 1

S K

K

C5, 3, 1

S

K K

C5, 2, 1

S K

K

(c) [ λxy.yx ] = λ∗x.λ∗y.yx

Figure 5: Step-by-step translation of the term λxy.yx using the colored

representation of terms of the set Cn, j, k.

occur at least once, the tree representation has at least b leaves and hence

at least b − 1 inner nodes. It also consists of at most n − 1 non-binding

abstractions. Therefore, the following inequalities are satisfied:

3b− 1 + c ≤ n (at least b occurrences of bound variables in total,

b binding abstractions

and at least b− 1 inner nodes for each bound variable),

c ≤ n− 1.

Proposition 2.7. For a λ-term M of size n with b binding and c non-

binding lambda abstractions, combinator [ M ] is an element of the set

Cn+1, j, n−(b+c), for some j such that j ≤ b+ c+ 1.

Proof. Due to Proposition 2.5, we only have to find an upper limit for

the expression 2b + c + 1 used in the definition of C2b+c+1, j, n−(b+c). From
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Observation 2.6, for any λ-term M of size n, we know that n ≥ 3b− 1 + c

and n ≥ c+ 1. Using it, we can define a linear optimization problem of the

following form (in which n is treated as a constant):

maximize: 2b+ c+ 1

constraints: 3b− 1 + c ≤ n
c+ 1 ≤ n
b, c ≥ 0

Therefore, 2b+c+1 ≤ n+ 4
3 . Since we are interested in the integer solution,

we get 2b + c + 1 ≤ n + 1. Hence, using Observation 2.2, the translation

[ M ] belongs to the set Cn+1, j, n−(b+c) for some j ≤ b+ c+ 1. �

Interpreting this proposition using the colored tree representation, it

claims that if we translate a term of size n, then the colored version of that

translation has at most n different colors, where for each color the number

of closed terms of that color of size smaller than 2n is limited by n + 1.

From this, we can conclude that it has at most 2(n+ 1)n+ 1 nodes of each

color in total. In the next step we determine an upper bound for the size

of all elements of a set Cn, j, k.

Proposition 2.8. The size of a combinator P ∈ Cn, j, k, i.e. |P |CL, is

bounded from above by 2n((n− 1)(k − 1) + j − 1) + k.

Proof. The proof goes by induction on the derivation of combinator P

from the set Cn, j, k.

(i) If P ∈ Cn, 1, 1, then P ≡ x or P ≡ K and so |P |CL = 1 for every n ≥ 1.

(ii) If P ≡ QR ∈ Cn, j, k where R is from Cn, j−1, k, then Q is a closed

term such that |Q|CL < 2n, and so |Q|CL ≤ 2n − 1. We use the induction

hypothesis for R to obtain:

|P |CL = 1 + |Q|CL + |R|CL
≤ 1 + (2n− 1) + 2n((n− 1)(k − 1) + j − 2) + k

= 2n((n− 1)(k − 1) + j − 1) + k.

(iii) If P ≡ QR ∈ Cn, 1, k, then Q is in Cn, j1, k1 and R is in Cn, j2, k2 such
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that k = k1 + k2 + 1 and j1, j2 ≤ n. Using the induction hypothesis for

terms Q and R we obtain:

|P |CL = 1 + |Q|CL + |R|CL
≤ 1 + 2n((n− 1)(k1 − 1) + j1 − 1) + k1

+ 2n((n− 1)(k2 − 1) + j2 − 1) + k2

≤ 2n(n− 1)(k − 1) + k. �

By Proposition 2.7 we know that for every λ-term M of size n with b

binding and c non-binding abstractions, its translation belongs to the set

Cn+1, j, n−(b+c), for some j such that j ≤ b+ c+ 1. Since j ≤ b+ c+ 1, we

have n − (b + c) ≤ n − j + 1. From this, we are able to define the set Tn

described earlier in (3):

Tn :=
⋃
{Cn+1, j, k : j ≤ n, k ≤ n− j + 1}. (4)

We use this definition to calculate an upper bound on the size growth after

translation.

Theorem 2.9. Let M be a λ-term of size n ≥ 1. The size of its

translation into combinatory logic using the standard translation is bounded

from above by 2n3 − n.

Proof. Let b and c denote respectively the number of binding and

non-binding abstractions of a term M . Using the definition (4) of the set

Tn we see that [ M ] ∈ Cn+1, j, k where j ≤ n and k ≤ n − j + 1. From

Proposition 2.8 we obtain:

|[ M ]|CL ≤ 2(n+ 1)(n(k − 1) + j − 1) + k

≤ 2(n+ 1)(n(n− j) + j − 1) + n− j + 1.

For any fixed value of the parameter n, the last part of this inequality is

a strictly decreasing function in j. Therefore, it attains its maximum for

j = 1. This gives an upper bound of |[ M ]|CL equal to 2n3 − n. �

.2.2 Lower bound

In this section we study a particular class of λ-terms in order to obtain

a lower bound of the function SizeT(n). These are namely terms of the
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form λxkxk−1 . . . x1 . x1 . . . xk−1xk. We show that for such terms, being of

size n = 3k−1, the standard translation outputs combinators of size exactly
2
81n

3 + 8
27n

2 + 80
27n−

187
81 . We also consider terms for other possible values

of the size parameter n, namely n = 3k and n = 3k + 1. For that part,

we simply construct terms which have similar shape as in the former case

and show that their size is also of order Ω(n3). Using it, we conclude that

SizeT(n) is of order Ω(n3).

Definition 2.10. For all positive integers i, j and k we define induc-

tively the following combinators:

Wk = x1x2 . . . xk,

Ai,k = λ∗xi. . . . λ
∗x1.Wk,

S1,k = S (λ∗x1.Wk),

Si,k = S (λ∗xi.Si−1,k) for 1 < i ≤ k,

N1 = S,

Nj = S (K Nj−1) for j > 1,

Pj,j,k = Ni Ai,k for 1 ≤ j ≤ k,
Pi,j,k = Ni Pi+1,j,k for 1 ≤ i < j ≤ k.

Our goal now is to characterize combinators Ak,k using the above defi-

nitions. First we decompose it into some smaller parts and show that every

term Ak,k contains a sub-term described by the definition of Sk,k. Then we

focus on describing it by means of the terms P1,k,k. Due to its recursive

definition we are able to compute its exact size. Now we present a series of

propositions which lead us to determine the size of the term Ak,k.

Observation 2.11. For every i, j and k such that 1 ≤ i ≤ j ≤ k we

have FVCL(Sj,k) = FVCL(Pi,j,k) = FVCL(Wk)\{x1, . . . , xj} = {xj+1, . . . , xk}.

Proposition 2.12.

(i) For every k ≥ 2 and i < k we have Ai,k = Si,k−1(λ∗xi. . . . λ
∗x1.xk).

(ii) For every k ≥ 2 we have Ak,k = S(K (Sk−1,k−1))(λ∗xk. . . . λ
∗x1.xk).
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Proof.

(i) The proof is by induction on parameters i and k.

A1,2 = λ∗x1.x1x2 = S(λ∗x1.x1)(λ∗x1.x2)

= S1,1(λ∗x1.x2),

A1,k = λ∗x1.x1x2 . . . xk = S (λ∗x1.x1x2 . . . xk−1)(λ∗x1.xk)

= S1,k−1(λ∗x1.xk),

Ai,k = λ∗xi. . . . λ
∗x1.x1x2 . . . xk

= λ∗xi.(Si−1,k−1)(λ∗xi−1. . . . λ
∗x1.xk) (induction hypothesis)

= S (λ∗xi.Si−1,k−1)(λ∗xi. . . . λ
∗x1.xk) (Observation 2.11)

= Si,k−1(λ∗xi. . . . λ
∗x1.xk).

(ii) This part follows from the previous point and the fact that term

Sk−1,k−1 has no free variables:

Ak,k = λ∗xk. . . . λ
∗x1.x1x2 . . . xk

= λ∗xk.Sk−1,k−1(λ∗xk−1. . . . λ
∗x1.xk) (Proposition 2.12(i))

= S(K (Sk−1,k−1))(λ∗xk. . . . λ
∗x1.xk) (Observation 2.11). �

Proposition 2.13. (i) For every i, j and k such that 1 ≤ i ≤ j < k

we have λ∗xj+1.Pi,j,k = Pi+1,j+1,k.

(ii) For every j and k such that 1 ≤ j ≤ k we have Sj,k = P1,j,k.

Proof.

(i) The proof is by induction on the parameter i. From Observation 2.11

and the assumption that j < k we have xj+1 ∈ FVCL(Pi,j,k). Following the

definitions of Pi,j,k and bracket abstraction we obtain:

λ∗xj+1.Pj,j,k = λ∗xj+1.Nj Aj,k

= S(KNj) (λ∗xj+1.Aj,k) (Observation 2.11)

= Nj+1 Aj+1,k

= Pj+1,j+1,k,
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S

S
K S

λ∗x2x1.x1x2x3

λ∗x2x1.x4
S

S
K S S

K
S

K S

λ∗x3x2x1.x1x2x3

λ∗x3x2x1.x4

S
K

S

S
K S S

K
S

K S

λ∗x3x2x1.x1x2x3

λ∗x4x3x2x1.x4

Figure 6: Three consecutive steps of the translation of the term

λx4x3x2x1.x1x2x3x4.

λ∗xj+1.Pi,j,k = λ∗xj+1.Ni Pi+1,j,k

= S(KNi) (λ∗xj+1.Pi+1,j,k) (Observation 2.11)

= Ni+1Pi+2,j+1,k (induction hypothesis)

= Pi+1,j+1,k.

(ii) The proof is by induction on the parameter j.

S1,k = S (λ∗x1.Wk) = N1A1,k = P1,1,k,

Sj,k = S (λ∗xj .Sj−1,k)

= S (λ∗xj .P1,j−1,k) (induction hypothesis)

= N1 P2,j,k (Proposition 2.13)

= P1,j,k. �
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Proposition 2.14. For every k ≥ 1 the size of P1,k,k equals

|P1,k,k|CL =
∑k

i=1(4i− 2) + |Ak,k|CL.

Proof. By the inductive definition of P1,k,k we get:

|Pi,k,k|CL = |Ni Pi+1,k,k|CL = 1 + |Ni|CL + |Pi+1,k,k|CL,
|Pk,k,k|CL = |Nk Ak,k|CL = 1 + |Nk|CL + |Ak,k|CL.

Since |Ni|CL = 4i− 3 we have:

|P1,k,k|CL = k +
k∑
i=1

|Ni|CL + |Ak,k|CL = k +

k∑
i=1

(4i− 3) + |Ak,k|CL

=
k∑
i=1

(4i− 2) + |Ak,k|CL. �

Proposition 2.15. For every k ≥ 1 the size of λ∗xk. . . . λ
∗x1.xk is

equal to 6k − 1.

Proof. First, we notice that λ∗xk−1. . . . λ
∗x1.xk =

k−1 times︷ ︸︸ ︷
K(K(. . . (K xk) . . . )).

From this we have M := λ∗xk. . . . λ
∗x1.xk = λ∗xk.K(K(. . . (Kxk) . . . )).

Using the definition of bracket abstraction we obtain

M = S(KK)︸ ︷︷ ︸(S(KK)︸ ︷︷ ︸(. . . (S(KK)︸ ︷︷ ︸︸ ︷︷ ︸
k−1 times

(SKK)) . . . )).

Therefore, |λ∗xk. . . . λ∗x1.xk|CL = 6(k − 1) + |SKK|CL = 6k − 1. �

Proposition 2.16. For every k > 0 the size of Ak,k equals 2
3k

3 + 2k2 +
22
3 k − 5.

Proof. By Proposition 2.12

Ak,k = S (K (Sk−1,k−1 ) ) (λ∗xk. . . . λ
∗x1.xk ).

Then, to calculate the size of Sk−1,k−1 we use Propositions 2.13 and 2.14

and obtain:

|Sk−1,k−1|CL = |P1,k−1,k−1|CL =
k−1∑
i=1

(4i− 2) + |Ak−1,k−1|CL.
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Together with Proposition 2.15, which establishes the size of a combinator

of the form λ∗xk . . . x1.xk, we get the following equation:

|Ak,k|CL = |S(K (Sk−1,k−1))(λ∗xk. . . . λ
∗x1.xk)|CL

= 5 + |λ∗xk. . . . λ∗x1.xk|CL + |Sk−1,k−1|CL

= 5 + 6k − 1 +
k−1∑
i=1

(4i− 2) + |Ak−1,k−1|CL

= 6 + 4
k∑
i=1

i+ |Ak−1,k−1|CL.

In order to obtain the closed form of this recurrence, we easily compute

that its solution is 6k − 5 + 4
∑k

i=1

∑i
j=1 j. Therefore,

|Ak,k|CL = 6k − 5 + 4
k∑
i=1

i∑
j=1

j

=
2

3
k3 + 2k2 +

22

3
k − 5. �

Proposition 2.17. The standard translation algorithm maps terms of

the form λxk . . . x2x1 . x1x2 . . . xk, which are of size n = 3k − 1, into com-

binators of size 2
81n

3 + 8
27n

2 + 80
27n−

187
81 .

Proof. It follows from Proposition 2.16 by substituting n+1
3 for k in

the expression 2
3k

3 + 2k2 + 22
3 k − 5. �

Using this proposition we can deduce what is the lower bound for the

worst-case space complexity.

Theorem 2.18. The worst-case space complexity of the standard trans-

lation is of order Ω(n3).

Proof. In previous propositions we focused on the case where the size

parameter n is of the form n = 3k−1 for every possible value of k. We also

need to consider other possible values of n. When n is equal to 3k, we may

consider terms of the form Ak+1,k. By the definition of the translation we

obtain that [ Ak+1,k ] = K [ Ak,k ]. Using Proposition 2.17 we can calculate

its exact size, which is 2
81n

3 + 2
9n

2 + 22
9 n− 3. Similarly, for the case when

n equals 3k + 1 we consider terms Ak+2,k. After simple calculations, we
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Size Terms scheme Expected size

n = 3k − 1 λx1 . . . xk . x1 . . . xk
2
81n

3 + 14
27n

2 + 74
27n−

223
81

n = 3k λx1 . . . xkxk+1 . x1 . . . xk
2
81n

3 + 4
9n

2 + 28
9 n− 3

n = 3k + 1 λx1 . . . xk . x1 . . . xkx1
2
81n

3 + 16
27n

2 + 68
27n−

659
81

Table 1: Predictions of the worst-case terms for the standard translation

algorithm.

obtain that the size of its translation is 2
81n

3 + 4
27n

2 + 56
27n −

263
81 . These,

together with Proposition 2.17, allows us to conclude that the worst-case

space complexity of the standard translation is of order Ω(n3). �

.3 Conclusions and future work

From Theorems 2.9 and 2.18 we see that the worst-case size of a term

produced by the standard translation is of order Θ(n3):

2

81
n3 +

4

27
n2 +

56

27
n− 263

81
≤ SizeT(n) ≤ 2n3 − n.

There is still room for improvement since these bounds are not tight.

We used a Haskell program which computes exact values of the function

SizeT(n) to conduct several experiments. Based on the results, we state

a conjecture concerning the shape of the worst-case terms. If we optimisti-

cally assume that the size of these terms after translation can be expressed

by some polynomial, then we can simply interpolate the growth rate for

each of them. These predictions are listed in Table 1. We believe that our

method of analysis of the upper bound can be easily adapted to investi-

gate other translation algorithms as well, e.g. the translation using Turner’s

combinators used in [Tur79]. We would also like to provide a lower bound

for the space complexity of all possible translations. Then, we can inves-

tigate whether it is possible to design an algorithm that is asymptotically

optimal. The analysis of its space complexity can be used to determine an

upper limit of the number of λ-terms of a given size, which is still an open

problem.
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