PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Siderophore Production of the Hg-Resistant Endophytic Bacteria Isolated from Local Grass in the Hg-Contaminated Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mercury (Hg)-contaminated soil remediation has become an urgent necessity due to its harmful effect on the environment and living organisms. The use of plant-endophyte partnership for phytoremediation demonstrates an excellent opportunity for cleaning heavy metal contaminated soil. This study aimed to screen and characterize the phenotype of the Hg-resistant endophytic bacteria from local grasses (Cynodon dactylon and Eleusine indica) in the Hg-contaminated soil of West Nusa Tenggara, Indonesia with siderophore-producing traits. Siderophore production of bacteria was qualitatively tested using overlay-chrome azurol S (O-CAS) medium and quantitatively tested using the succinic acid medium. The assay was designed using a Completely Randomized Factorial Design consisting of two factors, i.e., isolate type and incubation time with three replicates. The selected isolates were pathogenicity tested, then they were phenotypically characterized. All tested isolates showed a positive result on changing O-CAS medium color from blue to yellow/brown that indicated hydroxamate type of siderophore. The highest siderophore production was achieved at 72 hours of incubation, by the EI5 and EI6 isolates (62.90% and 35.31%, respectively). In turn, the CD6, EI5 and EI6 isolates achieved high siderophore production at a short incubation period (48 hours). However, during the hemolysis test, only the CD6 and EI6 isolates were not pathogenic. The CD6 and EI6 isolates would be used for phytoremediation on Hg-contaminated soil in the future study. On the basis of the 16S rDNA analysis, it was shown that the CD6 isolate was Jeotgalicoccus huakuii and the EI6 isolate was Bacillus amyloliquefaciens.
Rocznik
Strony
129--138
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Doctoral Program of Agricultural Science, Faculty of Agriculture, Brawijaya University, Jl. Veteran Malang 65145, Indonesia
  • Soil Science Department, Faculty of Agriculture, Brawijaya University, Jl. Veteran Malang 65145, Indonesia
autor
  • Department of Biology, Faculty of Science, Brawijaya University, Jl. Veteran Malang 65145, Indonesia
  • Soil Science Department, Faculty of Agriculture, Brawijaya University, Jl. Veteran Malang 65145, Indonesia
Bibliografia
  • 1. Ahmed, E. and S. J. M. Holmström. 2014. Siderophores in environmental research: Roles and applications, Microb. Biotechnol., 7(3), 196–208.
  • 2. Ali, S. S. and N. N. Vidhale. 2016. Bacterial Siderohore and their Application : A review Review Article Bacterial Siderophore and their Application : A review, 2(January), 303–312.
  • 3. Bharucha, U. D., K. C. Patel, and U. B. Trivedi. 2013. Antifungal activity of catecholate type siderophore produced by Bacillus sp, Int. J. Res. Pharm. Sci., 4(4), 528–531.
  • 4. Cappuccino, J. G. and S. Natalie. 2014. Cultivation of Microorganisms: Nutritional and Physical Requirements, and Enumeration of Microbial Populations, Pearson Education, New York.
  • 5. Dash, H. R. and S. Das. 2014. Bioremediation potential of mercury by Bacillus species isolated from marine environment and wastes of steel industry, Bioremediation Journal 18 (3), 204–212.

  • Dewi, K. and Y. Ismawati. 2015. Inventory of mercury releases in indonesia, Proc. The 5th Environmental Technology and Management Conference “Green Technology towards Sustainable Environment, 1–8.
  • 6. Falandysz, J., J. Zhang, Y. Z. Wang, M. Saba, G. Krasińska, A. Wiejak, T. Li. 2015. Evaluation of mercury contamination in fungi boletus species from latosols, lateritic red earths, and red and yellow earths in the circum-pacific mercuriferous belt of southwestern China, PLoS One, 10(11), 1–19.
  • 7. Franchi, E., E. Rolli, R. Marasco, G. Agazzi, S. Borin, P. Cosmina, F. Pedron, I. Rosellini, M. Barbafieri, G. Petruzzelli. 2017. Phytoremediation of a multi contaminated soil: mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth-promoting bacteria, J. Soils Sediments, 17(5), 1224–1236.
  • 8. Ghosh, S. K., S. Pal, and N. Chakraborty. 2015. The qualitative and quantitative assay of siderophore production by some microorganisms and effect of different media on its production, Int. J. Chem. Sci., 13(4), 1621–1629.
  • 9. Glick, B. R. 2012. Plant Growth-Promoting Bacteria : Mechanisms and Applications, 2012, 1–15.
  • 10. Grobelak, A. and J. Hiller. 2017. Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores, Int. J. Phytoremediation, 19(9), 825–833.
  • 11. Guo, X. Q., R. Li, L. Q. Zheng, D. Q. Lin, J. Q. Sun, S. P. Li, W. J. Li, and J. D. Jiang, 2010, Jeotgalicoccus Huakuii Sp. Nov., a Halotolerant Bacterium Isolated from Seaside Soil, International Journal of Systematic and Evolutionary Microbiology, 60(6), 1307–10.
  • 12. Ijaz, A., A. Imran, M. Anwar ul Haq, Q. M. Khan, and M. Afzal. 2016. Phytoremediation: recent advances in plant-endophytic synergistic interactions, Plant Soil, 405(1–2), 179–195.
  • 13. Jabeen, H., S. Iqbal, F. Ahmad, M. Afzal, and S. Firdous. 2016. Enhanced remediation of chlorpyrifos by ryegrass (Lolium multiflorum) and a chlorpyrifos degrading bacterial endophyte Mezorhizobium sp. HN3, Int. J. Phytoremediation, 18(2), 126–133.
  • 14. Jenifer, C. A. and A. S. Sharmili. 2015. Studies on siderophore production by microbial isolates obtained from aquatic environment, Pelagia Res. Libr. Eur. J. Exp. Biol., 5(10), 41–45.
  • 15. Khan, L. B., S. Swift, T. Kamal, and H. M. Read. 2018. Simulation of MICROBACT Strip Assay Using Colored Liquids to Demonstrate Identification of Unknown Gram-Negative Organisms in Undergraduate Laboratory, J. Microbiol. Biol. Educ., 19(2), 19–22.
  • 16. Kong, Z.and B. R. Glick. 2017. Chapter 2: The Role of Plant GrowthPromoting Bacteria in Metal Phytoremediation Zhaoyu, Advances in Microbial Physiology, 71(August), 327–353.
  • 17. Leguizamo, M. A. O., W. D. F. Gómez, and M. C. G. Sarmiento. 2017. Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands – A review, Chemosphere, 168, 1230–1247.
  • 18. Leung, H. M., Z. W. Wang, Z. H. Ye, K. L. Yung, X. L. Peng, and K. C. Cheung. 2013. Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: A review, Pedosphere, 23(5), 549–563.
  • 19. Manoj, S. R., C. Karthik b, K. Kadirvelu, P. I. Arulselvi, T. Shanmugasundaram, B. Bruno, M. Rajkumar. 2020. Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review, J. Environ. Manage., 254(2020) 109779.
  • 20. Manwar, A. V., S. R. Khandelwal, B. L. Chaudhari, J. M. Meyer, and S. B. Chincholkar. 2004. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi, Appl. Biochem. Biotechnol.–Part A Enzym. Eng. Biotechnol., 118(1–3), pp. 243–251.
  • 21. Meyer, J. M. and M. A. Abdallah. 1978. The fluorescent pigment of Pseudomonas fluorescens: Biosynthesis, purification and physicochemical properties, J. Gen. Microbiol., 107(2), 319–328.
  • 22. Murtado, A., N. R. Mubarik, and A. Tjahjoleksono. 2020. Isolation and characterization endophytic bacteria as biological control of fungus Colletotrichum sp. on onion plants (Allium cepa L.), IOP Conf. Ser. Earth Environ. Sci., 457( 1).
  • 23. Padmavathiamma, P. K. and L. Y. Li. 2007. Phytoremediation technology: Hyper-accumulation metals in plants, Water. Air. Soil Pollut., 184(1–4), 105–126.
  • 24. Pereira, P., A. Nesci, and M. Etcheverry. 2007. Effects of biocontrol agents on Fusarium verticillioides count and fumonisin content in the maize agroecosystem: Impact on rhizospheric bacterial and fungal groups, Biol. Control, 42(3), 281–287.
  • 25. Pereira, P., S. G. Ibáñez, E. Agostini, and M. Etcheverry. 2011. Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities, Appl. Soil Ecol., 51(1), 52–59.
  • 26. Pérez-Miranda, S., N. Cabirol, R. George-Téllez, L. S. Zamudio-Rivera, and F. J. Fernández. 2007. O-CAS, a fast and universal method for siderophore detection, J. Microbiol. Methods, 70(1), 127–131.
  • 27. Prescott, H. 2002. Laboratory exercises in microbiology, Lab. Exerc. Microbiol., 117–124.
  • 28. Rajkumar, M., N. Ae, M. N. V. Prasad, and H. Freitas. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction, Trends Biotechnol., 28(3), 142–149.
  • 29. Ruiz, O. N., D. Alvarez, C. Torres, L. Roman, and H. Daniell. 2011. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability, Plant Biotechnol. J., 9 (5), 609–617.
  • 30. Sasirekha, B. and S. Srividya. 2016. Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli, Agric. Nat. Resour., 50(4), 250–256.
  • 31. Schütze, E., E. Ahmed, A. Voit, M. Klose, M. Greyer, A.Svatoš, D. Merten, M. Roth, S. J. M. Holmström, E. Kothe. 2015. Siderophore production by streptomycetes–stability and alteration of ferrihydroxamates in heavy metal-contaminated soil, Environ. Sci. Pollut. Res., 22(24), 19376–19383.
  • 32. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophore, Anal. Biochem., 160, 47–56.
  • 33. Shao, B., J. Luo, M. He, L. Tian, W. H, L. Xu, Z. Zhang, Y. 2020. Ecological risk assessment at the food web scale: A case study of a mercury contaminated oilfield, Chemosphere, 260(127559), 1–10.
  • 34. Sheng, X. F., J. J. Xia, C. Y. Jiang, L. Y. He, and M. Qian. 2008. Characterization of heavy metalresistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape, Environ. Pollut., 156(3), 1164–1170.
  • 35. Sudewi, S., A. Ala, Baharuddin, and M. Farid. 2020. The isolation, characterization endophytic bacteria from roots of local rice plant kamba in, Central Sulawesi, Indonesia, Biodiversitas, 21(4), 1614–1624.
  • 36. Tangahu, B. V., S. R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar, and M. Mukhlisin. 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation, Int. J. Chem. Eng., 2011(2011), 1–31.
  • 37. Trihadiningrum, Y., R. A. Latif, and R. M. Rachman. 2019. Speciation of mercury contaminant in public gold mine tailing and its stabilization using sulfur and sulfide, J. Ecol. Eng., 20(4), 29–34.
  • 38. Ustiatik, R. 2019. Potensi bakteri endofit resisten merkuri pada rumput lokal di tanah tercemar merkuri sebagai plant growth promoting bacteria (PGPB) (in Bahasa Indonesia). Thesis. Brawijaya University.
  • 39. Ustiatik, R., S. Nurfitriani, A. Fiqri, and E. Handayanto. 2020. The Use of Mercury-Resistant Bacteria to Enhance Phytoremediation of Soil Contaminated with Small-Scale Gold Mine Tailing, Nature Environment and Pollution Technology, 19(1), 253–61.
  • 40. Vos, P. D, G. M. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F. A. Rainey, K. H. Schleifer, and W. B. Whitman, eds. 2009. Bergey’s Manual of Systemic Bacteriology. Vol. 3. 2nd ed. Athens: Springer US.
  • 41. Xu, J., A. G. Bravo, A. Lagerkvist, S. Bertilsson, R. Sjöblom, and J. Kumpiene, 2015. Sources and remediation techniques for mercury contaminated soil, Environ. Int., 74 (2015), 42–53.
  • 42. Yan, X., Z. Wang, Y. Mei, L. Wang, X. Wang, Q. Xu, S. Peng, Y. Zhou and C. Wei. 2018. Isolation, diversity, and growth-promoting activities of endophytic bacteria from tea cultivars of Zijuan and Yunkang-10, Front. Microbiol., 9( JUL), 1–11.
  • 43. Zhang Y., X. Yu, W. Zhang, D. Lang, X. Zhang, G. Cui and X. Zhang. 2019. Interactions between Endophytes and Plants: Beneficial Effect of Endophytes to Ameliorate Biotic and Abiotic Stresses in Plants, J. Plant Biol., 62(1), 2014–2015.
Uwagi
1. Błędna numeracja w bibliografii ‒ rozdzielono poz. 5.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b151cd3-fa73-41ca-8525-e42661f95ea7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.