PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization and adsorption performance of surfactant-modified zeolite for chromium(VI) removal from aqueous solutions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examined the surface modification of natural zeolite sourced from Pangasinan, Philippines to assess its potential as an adsorbent for Cr(VI) removal. The natural zeolite (NZ) and surfactant-modified zeolite (SMZ) were characterized to evaluate their composition and alterations in surface properties. Characterization revealed a reduction in specific surface area (SSA) from 165.84 m2 g-1 to 37.68 m2 g-1 and a reversal in zeta potential from -16.9 mV to +46.73 mV, enabling Cr(VI) adsorption. Adsorption performance was investigated under varying conditions, including adsorbent dosage, contact time, solution pH, ionic strength, competing ions, and dissolved organic matter (DOM). Optimal Cr(VI) adsorption occurred at pH 3, with equilibrium reached rapidly, favoring the univalent HCrO4⁻ species over the divalent CrO42- species prevalent at higher pH levels. Increased ionic strength and competing ions reduced Cr(VI) adsorption, while the presence of DOM had no significant effect. SMZ exhibited a maximum adsorption capacity of 13.603 mg g-1, as described by the Langmuir isotherm model (R2 = 0.970), indicating a uniform monolayer adsorption mechanism. Comparative performance tests demonstrated Cr(VI) removal efficiencies of 61.52% for SMZ, 73.82% for powdered activated carbon (PAC), and 1.03% for NZ. Although the removal efficiency of SMZ is lower than PAC, it offers a cost-effective, resource-efficient alternative with potential scalability. The study has shown its applicability in wastewater treatment, particularly under acidic conditions, with proper management of ionic strength and competing ions. Future research should investigate regeneration capabilities and evaluate the SMZ performance in real-world conditions.
Rocznik
Strony
87--101
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
  • CSIRO Land and Water, PMB 2, Glen Osmond, SA, Australia
  • Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
  • Division of Soil Science, Agricultural Systems Institute, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines
Bibliografia
  • 1. Andrunik, M., Skalny, M., Gajewska, M., Marzec, M., & Bajda, T. (2023). Comparison of pesticide adsorption efficiencies of zeolites and zeolite-carbon composites and their regeneration possibilities. Heliyon, 9(10), e20572. https://doi.org/10.1016/j.heliyon.2023.e20572
  • 2. Apreutesei, R.E., Catrinescu, C., & Teodosiu, C. (2008). Surfactant-modified natural zeolites for environmental applications in water purification. Environmental Engineering and Management Journal, 7(2), 149–161. https://doi.org/10.30638/eemj.2008.025
  • 3. Asgari, G., Ramavandi, B., Rasuli, L., & Ahmadi, M. (2013). Cr(VI) adsorption from aqueous solution using a surfactant-modified Iranian zeolite: characterization, optimization, and kinetic approach. Desalination and Water Treatment, 51(31–33), 6009–6020. https://doi.org/10.1080/19443994.2013.769928
  • 4. Ayers, R.S. & Westcot, D.W. (1976). Water quality for agriculture. http://ci.nii.ac.jp/ncid/BA13374084
  • 5. Bloomfield, C., & Pruden, G. (1980). The behaviour of Cr(VI) in soil under aerobic and anaerobic conditions. Environmental Pollution Series A, Ecological and Biological, 23(2), 103-114. https://doi.org/10.1016/0143-1471(80)90058-6
  • 6. Bolortamir, T., Habaki, H., & Egashira, R. (2011). Effect of modification of mongolian natural zeolites on adsorption of chromium from aqueous solution. Proceedings of the Mongolian Academy of Sciences, 71–77. https://doi.org/10.5564/pmas.v0i4.49
  • 7. Bolaños-Benítez, V., Van Hullebusch, E. D., Birck, J., Garnier, J., Lens, P. N., Tharaud, M., Quantin, C., & Sivry, Y. (2020). Chromium mobility in ultramafic areas affected by mining activities in Barro Alto massif, Brazil: An isotopic study. Chemical Geology, 561, 120000. https://doi.org/10.1016/j.chemgeo.2020.120000
  • 8. Bouffard, S.C. (1998). Application of natural and tailored minerals to the treatment of thermomechanical paper mill white water. University of British Columbia: Ph.D. Thesis.
  • 9. Bowman, R.S. (2003). Applications of surfactant modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61(1–3), 43–56. https://doi.org/10.1016/s1387-1811(03)00354-8
  • 10. Breck, D.W. (1974). Zeolite Molecular Sieves Structure, Chemistry and Use, Wiley Interscience, New York
  • 11. Carneiro, E., Castro, J.D., Marques, S., Cavaleiro, A., & Carvalho, S. (2021). REACH regulation challenge: Development of alternative coatings to hexavalent chromium for minting applications. Surface and Coatings Technology, 418, 127271. https://doi.org/10.1016/j.surfcoat.2021.127271
  • 12. Castro-Castro, J.D., Macías-Quiroga, I.F., Giraldo-Gómez, G.I., & Sanabria-González, N.R. (2020). Adsorption of Cr(VI) in aqueous solution using a surfactant-modified bentonite. The Scientific World Journal, 2020, 1–9. https://doi.org/10.1155/2020/3628163
  • 13. Chapman, H. (1965). Cation exchange capacity. In: C.A. Black, L.E. Ensminger and F.E. Clark (Eds). Agronomy monograph/Agronomy 9, 891-901. https://doi.org/10.2134/agronmonogr9.2.c6
  • 14. Chen, Y.L., Chen, S., Frank, C., & Israelachvili, J. (1992). Molecular mechanisms and kinetics during the self-assembly of surfactant layers. Journal of Colloid and Interface Science, 153(1), 244–265. https://doi.org/10.1016/0021-9797(92)90316-e
  • 15. Coetzee, J.J., Bansal, N., & Chirwa, E.M.N. (2018). Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Exposure and Health, 12(1), 51–62. https://doi.org/10.1007/s12403-018-0284-z
  • 16. Dong, Y., Wu, D., Chen, X., & Lin, Y. (2010). Adsorption of bisphenol A from water by surfactant modified zeolite. Journal of Colloid and Interface Science, 348(2), 585–590. https://doi.org/10.1016/j.jcis.2010.04.074
  • 17. Eckert, J., Stewart, J., Waite, T., Szymczak, R., & Williams, K. (1990). Reduction of chromium(VI) at sub-μg l−1 levels by fulvic acid. Analytica Chimica Acta, 236, 357–362. https://doi.org/10.1016/s0003-2670(00)83334-6
  • 18. Ghanizadeh, G., Asgari, G., Mohammadi, A.M.S., & Ghaneian, M.T. (2012). Kinetics and isotherm studies of hexavalent chromium adsorption from water using bone charcoal. Fresenius Environmental Bulletin, 21, 1296–1302.
  • 19. Gładysz-Płaska, A., Majdan, M., Pikus, S., & Sternik, D. (2011). Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA. Chemical Engineering Journal, 179, 140–150. https://doi.org/10.1016/j.cej.2011.10.071
  • 20. Guan, H., Bestland, E., Zhu, C., Zhu, H., Albertsdottir, D., Hutson, J., Simmons, C.T., Ginic-Markovic, M., Tao, X., & Ellis, A.V. (2010). Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of Hazardous Materials, 183(1–3), 616–621. https://doi.org/10.1016/j.jhazmat.2010.07.069
  • 21. Hashemi, M., Eslami, F., & Karimzadeh, R. (2019). Organic contaminants removal from industrial wastewater by CTAB treated synthetic zeolite Y. Journal of Environmental Management, 233, 785-792 . https://doi.org/10.1016/j.jenvman.2018.10.003
  • 22. Hommaid, O. & Hamdo, J.Y. (2014). Adsorption of chromium(VI) from an aqueous solution on a Syrian surfactant-modified zeolite. International Journal of ChemTech Research. 6(7). 3753–3761.
  • 23. Inglezakis, V.J., & Zorpas, A.A. (2012). Handbook of Natural Zeolites. Bentham Science Publishers. https://doi.org/10.2174/97816080526151120101
  • 24. Iyer, M., Anand, U., Thiruvenkataswamy, S., Babu, H. W. S., Narayanasamy, A., Prajapati, V. K., Tiwari, C. K., Gopalakrishnan, A. V., Bontempi, E., Sonne, C., Barceló, D., & Vellingiri, B. (2023). A review of chromium epigenetic toxicity and health hazards. The Science of the Total Environment, 882, 163483. https://doi.org/10.1016/j.scitotenv.2023.163483
  • 25. Jing, X., Cao, Y., Zhang, X., Wang, D., Wu, X., & Xu, H. (2010). Biosorption of Cr(VI) from simulated wastewater using a cationic surfactant modified spent mushroom. Desalination, 269(1–3), 120–127. https://doi.org/10.1016/j.desal.2010.10.050
  • 26. Jorfi, S., Ahmadi, M.J., Pourfadakari, S., Jaafarzadeh, N., Soltani, R.D.C., & Akbari, H. (2017). Adsorption of Cr(VI) by natural clinoptilolite zeolite from aqueous solutions: Isotherms and kinetics. Polish Journal of Chemical Technology, 19(3), 106–114. https://doi.org/10.1515/pjct-2017-0056
  • 27. Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A., & Turan, M. (2007). Basic and reactive dye removal using natural and modified zeolites. Journal of Chemical & Engineering Data, 52(6), 2436–2441. https://doi.org/10.1021/je7003726
  • 28. Karapanagioti, H.K., Sabatini, D.A., & Bowman, R.S. (2005). Partitioning of hydrophobic organic chemicals (HOC) into anionic and cationic surfactant-modified sorbents. Water Research, 39(4), 699–709. https://doi.org/10.1016/j.watres.2004.10.014
  • 29. Leyva-Ramos, R., Jacobo-Azuara, A., Diaz-Flores, P., Guerrero-Coronado, R., Mendoza-Barron, J., & Berber-Mendoza, M.S. (2008). Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite. Colloids and Surfaces a Physicochemical and Engineering Aspects, 330(1), 35–41. https://doi.org/10.1016/j.colsurfa.2008.07.025
  • 30. Li, Z. (2004). Influence of solution pH and ionic strength on chromate uptake by surfactant-modified zeolite. Journal of Environmental Engineering, 130(2), 205–208. https://doi.org/10.1061/(asce)0733-9372(2004)130:2(205
  • 31. Li, Z., Beachner, R., McManama, Z., & Hanlie, H. (2007). Sorption of arsenic by surfactant-modified zeolite and kaolinite. Microporous and Mesoporous Materials, 105(3), 291–297. https://doi.org/10.1016/j.micromeso.2007.03.038
  • 32. Li, Z. & Bowman, R.S. (2001). Retention of inorganic oxyanions by organo-kaolinite. Water Research, 35(16), 3771–3776. https://doi.org/10.1016/s0043-1354(01)00120-8
  • 33. Malek, N. & Nizam, N.A. (2007). Surfactant modified zeolite Y as a sorbent for some chromium and arsenic species in water. Masters thesis, Universiti Teknologi Malaysia, Faculty of Science.
  • 34. Marttinen, S., Kettunen, R., Sormunen, K., Soimasuo, R. & Rintala, J. (2002). Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere, 46(6), 851–858. https://doi.org/10.1016/s0045-6535(01)00150-3
  • 35. Mier, M.V., Callejas, R.L., Gehr, R., Cisneros, B.E.J., & Alvarez, P.J. (2001). Heavy metal removal with mexican clinoptilolite: Water Research, 35(2), 373–378. https://doi.org/10.1016/s0043-1354(00)00270-0
  • 36. Misaelides, P., Zamboulis, D., Sarridis, P., Warchoł, J., & Godelitsas, A. (2007). Chromium(VI) uptake by polyhexamethylene-guanidine-modified natural zeolitic materials. Microporous and Mesoporous Materials, 108(1–3), 162–167. https://doi.org/10.1016/j.micromeso.2007.03.041
  • 37. Olegario-Sanchez, E., Nadurata, S.A., Merced, S.A.D., & Paz, E.D. (2019). Surface functionalized Philippine natural zeolite for arsenic adsorption in an aqueous solution. Japanese Journal of Applied Physics, 59(SA), SAAC05. https://doi.org/10.7567/1347-4065/ab45fc
  • 38. Olegario-Sanchez, E. & Pelicano, C.M. (2017). Characterization of Philippine natural zeolite and its application for heavy metal removal from acid mine drainage (AMD). Key Engineering Materials, 737, 407–411. https://doi.org/10.4028/www.scientific.net/kem.737.407
  • 39. Ozdemir, O., Turan, M., Turan, A., Faki, A., & Engin, A. (2009). Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ). Journal of Hazardous Materials, 166 2-3, 647-54. https://doi.org/10.1016/j.jhazmat.2008.11.123
  • 40. Palmer, C.D. & Puls, R.W. (1994). Natural attenuation of hexavalent chromium in groundwater and soils, U.S. EPA Ground Water Issue, EPA/540/5-94/505, Washington, DC.
  • 41. Pang, N.M., Kano, N.N., & Imaizumi, N.H. (2015). Adsorption of Chromium (VI) from Aqueous Solution Using Zeolite/Chitosan Hybrid Composite. Journal of Chemistry and Chemical Engineering, 9(7). https://doi.org/10.17265/1934-7375/2015.07.001
  • 42. Radnia, H., Ghoreyshi, A.A., Younesi, H., & Najafpour, G.D. (2012). Adsorption of Fe(II) ions from aqueous phase by chitosan adsorbent: equilibrium, kinetic, and thermodynamic studies. Desalination and Water Treatment, 50(1–3), 348–359. https://doi.org/10.1080/19443994.2012.720112
  • 43. Rai, D. & Zachara, J.M., (1986). Geochemical behavior of chromium species, Interim Report Electric Power Research Institute (EPRI) EA EA–4544, EPRI, Palo Alto, CA.
  • 44. Rengaraj, S., Yeon, K., & Moon, S. (2001). Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, 87(1–3), 273–287. https://doi.org/10.1016/s0304-3894(01)00291-6
  • 45. Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. Soil Science, 78(2), 154. https://doi.org/10.1097/00010694-195408000-00012
  • 46. Salgado-Gómez, N., Macedo-Miranda, M., & Olguín, M. (2014). Chromium(VI) adsorption from sodium chromate and potassium dichromate aqueous systems by hexadecyltrimethylammonium-modified zeolite-rich tuff. Applied Clay Science, 95, 197–204. https://doi.org/10.1016/j.clay.2014.04.013
  • 47. Solińska, A. & Bajda, T. (2021). Modified zeolite as a sorbent for removal of contaminants from wet flue gas desulphurization wastewater. Chemosphere, 286, 131772. https://doi.org/10.1016/j.chemosphere.2021.131772
  • 48. Torabian, A., Kazemian, H., Seifi, L., Bidhendi, G.N., Azimi, A.A., & Ghadiri, S.K. (2010). Removal of petroleum aromatic hydrocarbons by surfactant‐modified natural zeolite: the effect of surfactant. CLEAN - Soil Air Water, 38(1), 77–83. https://doi.org/10.1002/clen.200900157
  • 49. Tsafam, A., Domga, R., Dikdim, J.M.D., Nyounaï, F., Gnowe, D.W., Kagongbe, D., Nko’o, G. E., & Noumi, G.B. (2019). Adsorption of Cr(VI) onto clay modified by sodium chloride and clay modified by aluminum hydroxide of Karewa (North Cameroon). International Research Journal of Advanced Engineering and Science, 4(1), 2019. https://doi.org/10.5281/zenodo.2602724
  • 50. Warchol, J., Misaelides, P., Petrus, R., & Zamboulis, D. (2006). Preparation and application of organomodified zeolitic material in the removal of chromates and iodides. Journal of Hazardous Materials, 137(3), 1410–1416. https://doi.org/10.1016/j.jhazmat.2006.04.028
  • 51. Wingenfelder, U., Furrer, G., & Schulin, R. (2006). Sorption of antimonate by HDTMA-modified zeolite. Microporous and Mesoporous Materials, 95(1–3), 265–271. https://doi.org/10.1016/j.micromeso.2006.06.001
  • 52. Yalçın, S., Demirkol, G. T., Elnekave, M., Yurtseven, B., Öz, N., & Tüfekci, N. (2022). Efficient removal of hexavalent chromium in aqueous solution by cationic surfactant-treated natural anatolian clinoptilolite. Polish Journal of Environmental Studies, 31(2), 1415–1425. https://doi.org/10.15244/pjoes/140284
  • 53. Younas, F., Niazi, N.K., Bibi, I., Afzal, M., Hussain, K., Shahid, M., Aslam, Z., Bashir, S., Hussain, M.M. & Bundschuh, J. (2022). Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. Journal of Hazardous Materials, 422, 126926. https://doi.org/10.1016/j.jhazmat.2021.126926
  • 54. Zanin, E., Scapinello, J., De Oliveira, M., Rambo, C.L., Franscescon, F., Freitas, L., De Mello, J.M.M., Fiori, M.A., Oliveira, J., & Magro, J.D. (2016). Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent. Process Safety and Environmental Protection, 105, 194–200. https://doi.org/10.1016/j.psep.2016.11.008
  • 55. Zeng, Y., Woo, H., Lee, G., & Park, J. (2010). Removal of chromate from water using surfactant modified Pohang clinoptilolite and Haruna chabazite. Desalination, 257(1–3), 102–109. https://doi.org/10.1016/j.desal.2010.02.039
  • 56. Zhang, P., Avudzega, D.M., & Bowman, R.S. (2007). Removal of perchlorate from contaminated waters using surfactant‐modified zeolite. Journal of Environmental Quality, 36(4), 1069–1075. https://doi.org/10.2134/jeq2006.0432
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b11b089-e106-4af9-892b-9b4fdd30841f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.