PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of the carbon nanotubes counter electrode deposited on the FTO glass substrates on the structure and optoelectrical properties of dye-sensitized solar cells counter electrode (CE) was analysed. Carbon materials have been applied in DSSC s in order to produce low-cost solar cells with reasonable efficiency. Platinum is a preferred material for the counter electrode because of its high conductivity and catalytic activity. However, the costs of manufacturing of the platinum counter electrode limit its use to large-scale applications in solar cells. This paper presents the results of examining the structure and properties of the studied layers, defining optical properties of conductive layers and electrical properties of dye-sensitized solar cells manufactured with the use of carbon nanotubes. Such counter electrodes are promising for the future fabrication of stable, low-cost and effective dye-sensitized solar cells.
Twórcy
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego Str., 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego Str., 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego Str., 44-100 Gliwice, Poland
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18A Konarskiego Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] S. Al-Hallaj, K. Kiszynski, Renewable Energy Sources and Energy Conversion Devices, Green Energy and Technology, Springer-Verlag, London (2011).
  • [2] J. Bisquert, D. Cahen, G. Hodes, S. Rühle, A. Zaban, J. Phys. Chem. B 108, 8106-8118 (2004).
  • [3] V. V. Tyagi, N.A.A. Rahim, N. A. Rahim, J.A.L. Selvaraj, Renew. Sust. Energ. Rev. 20, 443-461 (2013).
  • [4] G. Kulesza, P. Panek, P. Zieba, Arch. Civ. Mech. Eng. 14, (4), 595-601 (2014).
  • [5] L. A. Dobrzański, A. Drygała, Mater. Sci. Forum 706-709, 829-834 (2012).
  • [6] B. Swatowska, T. Stapinski, K. Drabczyk, P. Panek, Opt. Appl. 41, (2), 487-492 (2011).
  • [7] L. A. Dobrzański, T. Tański, A. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser-surface-treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. G. Waugh (Ed.), Laser surface engineering: Processes and applications, Elsevier, Amsterdam (2015).
  • [8] S. Lesz, R. Babilas, R. Nowosielski, Solid State Phenom. 203-204, 296-301 (2013).
  • [9] L.A. Dobrzański, K. Lukaszkowicz, A. Kriz, J. Mater. Process. Tech. 143, 832-837 (2003).
  • [10] M.U. Uysal, M. Kremzer, Acta Phys. Pol. A 127, (4), 1355-1357 (2015).
  • [11] L.A. Dobrzański, M. Szindler, A. Drygała, M.M. Szindler, Cent. Eur. J. Phys. 12, (9), 666-670 (2014).
  • [12] A. Sedghi, H.N. Miankushki, Int. J. Electrochem. Sc. 9, 2029-2037 (2014).
  • [13] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics 23, (7), 805-812 (2015).
  • [14] E. Stathatos, J. Eng. Sci. Technol. Rev. 5, (4), 9-13 (2012).
  • [15] K. S. Lee, W. J. Lee, N. G. Park, S. O. Kim, J. H. Park, Chem. Commun. 47, 4264-4266 (2011).
  • [16] H. C. Weerasinghe, F. Huang, Y. Cheng, Nano Energy 2, (2), 174-189 (2013).
  • [17] M. Grätzel, J. Photoch. Photobio. C 4, 145-153 (2003).
  • [18] S. A. Song, M. J. Lim, K.Y. Jung, W.-W. So, S.-J. Moon, Arch. Metall. Mater. 60, (2), 1467-1471 (2015).
  • [19] M. Wu, T. Ma, J. Phys. Chem. C 118, (30), 16727-16742 (2014).
  • [20] Z. Tang, J. Wu, M. Zheng, J. Huo, Z. Lan, Nano Energy 2, (5), 622-627 (2013).
  • [21] X. Ma, G. Yue, J. Wu, Z. Lan, Nanoscale Res. Lett. 10, 327 (2015).
  • [22] S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair, A.S. Nair, J. Mater. Chem. A 2, 4474-4490 (2014).
  • [23] H. Anwar, A. E. George, I.G. Hill, Sol. Energy 88, 129-136 (2013).
  • [24] J. Chen, B. Li, J. Zheng, J. Zhao, Z. Zhu, J. Phys. Chem. C 116, (28), 14848-14856 (2012).
  • [25] T. Sawatsuk, A. Chindaduang, C. Sae-Kung, S. Pratontep, G. Tumcharern, Diam. Relat. Mater. 18, 524-527 (2009).
  • [26] C.-T. Hsieh, B.-H. Yang, Y.-F. Chen, Diam. Relat. Mater. 27-28, 68-75 (2012).
  • [27] H. Desilvestro, Y. Hebting, M. Khan, D. Milliken, Mater. Matt. 9, (1), 14-18 (2014).
  • [28] L. A. Dobrzański, M. Bonek, M. Piec, E. Jonda, Mater Sci Forum. 532-533, 657-660 (2006).
  • [29] M. Bonek, L. A. Dobrzański, Mater Sci Forum. 654-656, 1848-1851 (2010).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b111e3a-b627-46d4-8262-8d51d8508201
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.