PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal energy storage using stearic acid as PCM material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents an experimental study of thermal energy storage by the use of PCM. The aim of the study was to establish the influence of the different inlet temperature of heat transfer fluid (HTF) and the different Reynolds number of HTF on the intensity of the charging and discharging processes. The PCM used in this study was stearic acid and water was used as HTF. A copper helical coil mounted in a cylindrical container served as a heat transfer surface.
Rocznik
Strony
217--223
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
  • Faculty of Mechanical Engineering, University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
Bibliografia
  • 1. Domański R. (1990), Storage of thermal energy Państwowe Wydawnictwo Naukowe, Warszawa (in Polish)
  • 2. Letcher T. M. (2016), Storing Energy with Special Reference to Renewable Energy Sources, Elsevier,
  • 3. Sharma A., Tyagi V.V., Chen C.R., Buddhi D. (2013). Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, Vol. 13, pp. 318–345
  • 4. Al-Kayiem H. H., Lin S. C., Lukmon A. (2013), Review on Nanomaterials for Thermal Energy Storage Technologies, Nanoscience & Nanotechnology-Asia Vol. 3, pp. 60-71
  • 5. Li T., Lee J., Wang R., Kang Y. T. (2014). Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application, International Journal of Heat and Mass Transfer, Vol. 75, pp. 1–11
  • 6. Wu S., Fang G., Chen Z. (2012), Discharging characteristics modeling of cool thermal energy storage system with coil pipes using n-tetradecane as phase change material, Applied Thermal Engineering, Vol. 37, pp. 336-343
  • 7. Desgrosseilliers L., Whitman C. A., Groulx D., White M. A. (2013), Dodecanoic acid as a promising phase-change material for thermal energy storage, Applied Thermal Engineering, Vol. 53, pp. 37-41
  • 8. Al-Abidi A. A., Mata S., Sopiana K., Sulaimana M.Y., Mohammada A. Th. (2013), Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system, Energy and Buildings, Vol. 60, 270–279
  • 9. Shokouhmand H., Kamkari B. (2013), Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit, Experimental Thermal and Fluid Science, Vol. 50, 201-212
  • 10. Silakhori M, Metselaar H. S. C., Mahlia T. M. I., Fauzi H., Baradaran S., Naghavi M. S. (2014), Palmitic acid/polypyrrole composites as form-stable phase change materials for thermal energy storage, Energy Conversion and Management, Vol. 80, 491–497
  • 11. Hosseini M.J., Rahimi M., Bahrampoury R. (2014), Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system, International Communications in Heat and Mass Transfer, Vol. 50, 128–136
  • 12. Behzadi S., Farid M.M. (2014), Long term thermal stability of organic PCMs, Applied Energy, Vol. 122, 11–16
  • 13. Zhang P., Xiao X., Meng Z.N., Li M. (2015), Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement, Applied Energy, Vol. 137, 758–772
  • 14. Diao Y.H., Wang S., Zhao Y.H., Zhu T.T., Li C.Z., Li F.F. (2015), Experimental study of the heat transfer characteristics of a new-type flat micro-heat pipe thermal storage unit, Applied Thermal Engineering, Vol. 89, 871-882
  • 15. Delgado M., Lázaro A., Mazo J., Peñalosa C., Dolado P, Zalba B. (2015), Experimental analysis of a low cost phase change material emulsion for its use as thermal storage system, Energy Conversion and Management, Vol. 106, 201–212
  • 16. Cano D., Funéz C., Rodriguez L., Valverde J.L., Sanchez-Silva L. (2016), Experimental investigation of a thermal storage system using phase change materials, Applied Thermal Engineering, Vol. 107, pp. 264
  • 17. Korti A., Tlemsani F. Z. (2016), Experimental investigation of latent heat storage in a coil in PCM storage unit, Journal of Energy Storage, Vol. 5, pp. 177-186
  • 18. Motahar S, Khodabandeh R. (2016), Experimental study on the melting and solidification of a phase change material enhanced by heat pipe, International Communications in Heat and Mass Transfer, Vol. 73, 1-6
  • 19. Wang Y., Wang L., Xie N., Lin X., Chen H. (2016), Experimental study on the melting and solidification behavior of erythritol in a vertical shell-and heat thermal storage unit, International Journal of Heat and Mass Transfer, Vol. 99, 770–781
  • 20. D'Avignon K., Kummert M. (2016), Experimental assessment of a phase change material storage tank, Applied Thermal Engineering, Vol. 99, 880–891
  • 21. Agarwal A., Sarviya R.M. (2016), An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material, Engineering Science and Technology, an International Journal, Vol. 19, 619–631
  • 22. Tayssir M., Eldemerdash S. M., Sakr R. Y., Elshamy A. R., Abdellatif O. E. (2017), Experimental investigation of melting behavior of PCM by using coil heat source inside cylindrical container, Journal of Electrical Systems and Information Technology, Vol. 4, 18-33
  • 23. Zondag H.A., de Boera R., Smedinga S.F., van der Kamp J. (2018), Performance analysis of industrial PCM heat storage lab prototype, Journal of Energy Storage, Vol. 18, 402–413
  • 24. Neumann H., Niedermaier S., Gschwander S., Schossig P. (2018), Cycling stability of D-mannitol when used as phase change material for thermal storage applications, Thermochimica Acta, Vol. 660, 134–143
  • 25. Kabeel A.E., El-Samadony Y.A.F., El-Maghlany W. M. (2018), Comparative study on the solar still performance utilizing different PCM, Desalination, Vol. 432, 89-96
  • 26. Kabbara M., Groulx D., Joseph A. (2018), A parametric experimental investigation of the heat transfer in a coil in-tank latent heat energy storage system, International Journal of Thermal Sciences, Vol. 130, 395–405
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b0f5472-1e6f-4dcc-94f2-90ddc7ad0925
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.