PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of chemical composition and plastic deformation on corrosion properties of highMn austenitic steels in alkaline solution

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to compare the corrosion properties of two high-Mn austenitic steels with various Al and Si additions in 0.1M NaOH solution using a potentiodynamic method. Design/methodology/approach: The steels used for the investigation were thermomechanically rolled in 3 passes. The final thickness of about 2 mm was obtained at a temperature of 850°C. Three groups of samples were prepared: thermomechanically rolled, thermomechanically rolled and additionally annealed at 900°C for 20 min, thermomechanically rolled and additionally cold deformed in static tensile test to total elongation of 36%. Corrosion resistance of investigated steels was examined using the potentiodynamic method. The metallographic inspection of corrosion damage included scanning electron microscope observations. The chemical analyses of the corrosion pits were carried out using EDS techniques. Findings: It was found that X4MnSiAlNbTi27-4-2 and X6MnSiAlNbTi26-3-3 steels were characterized by relatively high corrosion resistance in 0.1M NaOH solution independently of their state. EDS analysis revealed that corrosion pits nucleated preferentially at nonmetallic inclusions such as MnS and AlN. Results of potentiodynamic tests showed that cold deformation had the highest influence on decreasing the corrosion resistance of investigated steels. Thermomechanically treated and supersaturated specimens showed lower values of corrosion current density and consequently less amount of corrosion damage. Research limitations/implications: To investigate in more detail the corrosion behaviour of high-manganese austenitic steels, the impedance spectroscopy investigations will be carried out. Practical implications: The knowledge of the corrosion resistance of high-Mn steels has a significant effect on their industrial application in the automotive industry. Originality/value: The corrosion resistance of two high-manganese austenitic steels with different initial microstructures was compared in alkaline solution.
Rocznik
Strony
31--39
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn (Al,Si) TRIP/TWIP steels developments properties – applications, International Journal of Plasticity 16 (2000) 1391-1409.
  • [2] J. Mazurkiewicz, Structure and properties of high manganese MnSiAlNbTi25-1-3 steels with increased store of cold plastic deformation energy, Open Access Library 7/25 (2013) 1-139 (in Polish).
  • [3] A. Grajcar, M. Opiela, G. Fojt-Dymara, The influence of hot-working conditions on a structure of highmanganese steel, Archives of Civil and Mechanical Engineering 9/3 (2009) 49-58.
  • [4] G. Frommeyerr, U. Brux, Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light TRIPLEX Steels, Steel Research International 77 (2006) 627-633.
  • [5] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum 638-642 (2010) 3224-3229.
  • [6] L.A. DobrzaĔski, W. Borek, Hot deformation and recrystallization of advanced high-manganese austenitic TWIP steels, Journal of Achievements in Materials and Manufacturing Engineering 46/1 (2011) 71-78.
  • [7] Y.S. Zhang, X.M. Zhua, S.H. Zhong, Effect of alloying elements on the electrochemical polarization behavior and passive film of Fe–Mn base alloys in various aqueous solutions, Corrosion Science 46/4 (2004) 853- 876.
  • [8] T. Dieudonné, L. Marchetti, M. Wery, F. Miserque, M. Tabarant, J. Chêne, C. Allely, P. Cugy, C.P. Scott, Role of copper and aluminum on the corrosion behavior of austenitic Fe–Mn–C TWIP steels in aqueous solutions and the related hydrogen absorption, Corrosion Science 83 (2014) 234-244.
  • [9] A. Grajcar, A. Płachcińska, Effect of sulphide inclusions on the pitting corrosion behavior of high-Mn steels in chloride and alkaline solutions, Materiali in Tehnologije 50/5 (2016) (in press).
  • [10] A. Grajcar, B. Grzegorczyk, A. Kozłowska, Corrosion resistance and pitting behaviour of low-carbon high- Mn steels in chloride solution, Archives of Metallurgy and Materials 61 (2016) (in press).
  • [11] P. Schmuki, H. Hildebrand, A. Friedrich, S. Virtanen, The composition of the boundary region of MnS inclusions in stainless steel and its relevance in triggering pitting corrosion, Corrosion Science 47 (2005) 1239-1250.
  • [12] D.E. Williams, M. R. Kilburn, J. Cliff, G.I.N. Waterhouse, Composition changes around sulphide inclusions in stainless steels, and implications for the initiation of pitting corrosion, Corrosion Science 52 (2010) 3702-3716.
  • [13] H. Krawiec, V. Vignal, O. Heintz, R. Oltra, Influence of the dissolution of MnS inclusions under free corrosion and potentiostatic conditions on the composition of passive films and the electrochemical behaviour of stainless steels, Electrochimica Acta 51 (2006) 3235-3243.
  • [14] S. Lasek, E. Mazancova, Influence of thermal treatment on structure and corrosion properties of high manganese TRIPLEX steels, Metalurgija 52/4 (2013) 441-444.
  • [15] M.B. Kannan, R.K.S. Raman, S. Khoddam, Comparative studies on the corrosion properties of a Fe-MnAl-Si steel and an interstitial-free steel, Corrosion Science 50/10 (2008) 2879-2884.
  • [16] V.F.C. Lins, M.A. Freitas, E.M.P. e Silva, Corrosion resistance study of Fe–Mn–Al–C alloys using immersion and potentiostatic tests, Applied Surface Science 250/1-4 (2005) 124-134.
  • [17] A. Grajcar, A. Płachcińskaa, S. Topolska, M. Kciuk, Effect of thermomechanical treatment on the corrosion behaviour of Si and Al-containing high-Mn austenitic steel with Nb and Ti microaddition, Materiali in Tehnologije 49/6 (2015) 889-894.
  • [18] A. Grajcar, A. Płachcińska, M. Kciuk, S. Topolska, Microstructure and electrochemical behaviour of hot- deformed and cold-strained high-Mn steels, Journal of Materials Engineering and Performance 25 (2016) (in press).
  • [19] A. Grajcar, S. Kołodziej, W. Krukiewicz, Corrosion resistance of high-manganese austenitic steels, Archives of Materials Science and Engineering 41/2 (2010) 77-84.
  • [20] M. Opiela. A. Grajcar, W. Krukiewicz, Corrosion behaviour of Fe-Mn-Si-Al austenitic steel in chloride solution, Journal of Achievements in Materials and Manufacturing Engineering 33/2 (2009) 159-165.
  • [21] J. Adamczyk, A. Grajcar, Effect of heat treatment conditions on the structure and mechanical properties of DP-type steel, Journal of Achievements in Materials and Manufacturing Engineering 17 (2006) 305-308.
  • [22] A. Grajcar, M. Opiela, Influence of plastic deformation on CCT-diagrams of low-carbon and mediumcarbon TRIP steels, Journal of Achievements in Materials and Manufacturing Engineering 29 (2008) 71-78.
  • [23] M. Jabłońska, A. Śmiglewicz, A study of mechanical properties of high manganese steels after different rolling conditions, Metalurgija 54/4 (2015) 619-622.
  • [24] M. Jabłońska, R. Michalik, Studies on the corrosion properties of high-Mn austenitic steels, Solid State Phenomena 227 (2014) 75-78.
  • [25] L.A. Dobrza ński, W. Borek, Thermo-mechanical treatment of Fe–Mn–(Al, Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12/3 (2012) 299-304.
  • [26] M. Opiela, A. Grajcar, Hot deformation behavior and softening kinetics of Ti-V-B microalloyed steels, Archives of Civil and Mechanical Engineering 12/3 (2012) 327-333.
  • [27] A. Grajcar, Structural and mechanical behaviour of TRIP-type microalloyed steel in hot-working conditions, Journal of Achievements in Materials and Manufacturing Engineering 30 (2008) 27-34.
  • [28] A. Grajcar, Effect of hot-working in the J+ D range on a retained austenite fraction in TRIP-aided steel, Journal of Achievements in Materials and Manufacturing Engineering 22 (2007) 79-82.
  • [29] T. Bator, Z. Muskalski, S. Wiewiórowska, J.W. Pilarczyk, Influence of the heat treatment on the mechanical properties and structure of TWIP steel in wires, Archives of Materials Science and Engineering 28/6 (2007) 337-340.
  • [30] A. Grajcar, Determination of the stability of retained austenite in TRIP-aided bainitic steel, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 111-114.
  • [31] I.M. Ghayad, A.S. Hamada, N.N. Girgis, W.A. Ghanem, Effect of cold working on the aging and corrosion behaviour of Fe-Mn-Al stainless steel, Steel Grips 4 (2006) 133-137.
  • [32] A. Grajcar, W. Krukiewicz, S. Kołodziej, Corrosion behaviour of plastically deformed high-Mn austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 228-235.
  • [33] A. Di Schino, M. Barteri, J.M. Kenny, Grain size dependence of mechanical, corrosion and tribological properties of high nitrogen stainless steels, Journal of Materials Science 38/15 (2003) 3257-3262.
  • [34] A. Abbasi Aghuy, M. Zakeri, M.H. Moayed, M. Mazinani, Effect of grain size on pitting corrosion of 304L austenitic stainless steel, Corrosion Science 94 (2015) 368-376.
  • [35] Y.S. Chun, J.S. Kim, K.T. Park, Y.K. Lee, C.S. Lee, Role of H martensite in tensile properties and hydrogen degradation of high-Mn steels, Materials Science and Engineering A 533 (2012) 87-95.
  • [36] Y. Fu, X. Wu, E.H. Han, W. Ke, K. Yang, Z. Jiang, Effects of cold work and sensitization treatment on the corrosion resistance of high nitrogen stainless steel in chloride solutions, Electrochimica Acta 54 (2009) 1618-1629.
  • [37] A. Kurc, M. Kciuk, M. Basiaga, Influence of cold rolling on the corrosion resistance of austenitic steel, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 154-162.
  • [38] A. Grajcar, U. Galisz, L. Bulkowski, Non-metallic inclusions in high manganese austenitic alloys, Journal of Achievements in Materials and Manufacturing Engineering 50/1 (2011) 21-30.
  • [39] K.J. Park, H.S. Kwon, Effects of Mn on the localized corrosion behavior of Fe–18Cr alloys, Electrochimica Acta 55 (2010) 3421-3427.
  • [40] J. Park, S.M. Lee, M. Kang, S. Lee, Y.K. Lee, Pitting corrosion behavior in advanced high strength steels, Journal Alloy and Compounds 619 (2015) 205-210.
  • [41] K.D. Ralston, N. Birbilis, Effect of grain size on corrosion: a review, Corrosion 66/7 (2010) 5-13.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b0d7901-c366-4130-8448-65f39a191c20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.