PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Innovative device for tensile strength testing of welded joints: 3d modelling, FEM simulation and experimental validation of test rig – a case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work shows a case study into 3D modelling, numerical simulations, and preliminary research of self-designed test rig dedicated for uniaxial tensile testing using pillar press. Innovative device was CAD modelled, FEM optimized, build-up according to the technological documentations. Then, the device utilization for tensile testing was validated via preliminary research. 3D model of the device was designed and FEM-analyzed using Solid Edge 2020 software. The set of FEM simulations for device components made ofstructuralsteel and stainless steel and at a workload equal 20 kN were conducted. This made it possible to optimize dimensions and selection of material used for individual parts of the device structure. Elaborated technical documentation allows for a buildup of a device prototype which was fixed into the pillar press. After that, the comparative preliminary experiments regarding tensile strength tests of X5CrNi18-10 (AISI 304) specimens were carried out. Tests were done using the commercial tensile strength machine and obtained results were compared with those received from an invented device. The ultimate tensile strength of X5CrNi18-10 steel, estimated using the commercial device (634 MPa) and results obtained from the patented device (620 MPa), were in the range of the standardized values. Findings confirm the utilization of the invented device for tensile strength testing.
Rocznik
Strony
92--105
Opis fizyczny
Bibliogr. 44 poz., fig., tab.
Twórcy
autor
  • Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Students Research Group of Materials Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University Of Technology, Mechanical Engineering Faculty, Department of Materials Engineering, Students Research Group of Materials Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • [1] Amininejad, A., Jamaati, R., & Hosseinipour, S. J. (2019). Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling. Materials Science and Engineering: A, 767, 138433. https://doi.org/10.1016/j.msea.2019.138433
  • [2] Branco, R., Costa, J. D., Martins Ferreira, J. A., Capela, C., Antunes, F. V., & Macek, W. (2021). Multiaxial fatigue behaviour of maraging steel produced by selective laser melting. Materials & Design, 201, 109469. https://doi.org/10.1016/j.matdes.2021.109469
  • [3] Caban, J., Nieoczym, A., & Gardyński, L. (2021). Strength analysis of a container semi-truck frame. Engineering Failure Analysis, 127, 105487. https://doi.org/10.1016/j.engfailanal.2021.105487
  • [4] Dziubińska, A., Surdacki, P., Winiarski, G., Bulzak, T., Majerski, K., & Piasta, M. (2021). Analysis of the New Forming Process of Medical Screws with a Cylindrical Head of 316 LVM Steel. Materials, 14(4), 710. https://doi.org/10.3390/ma14040710
  • [5] EN 10088-2:2014 – Stainless steels. Part 2: Technical delivery conditions for sheet/plate and strip for general purposes. (2014). ISO.
  • [6] Estrada, Q., Szwedowicz, D., Vergara, J., Solis, J., Paredes, M., Wiebe, L., & Silva, J. (2019). Numerical simulations of sandwich structures under lateral compression. Applied Computer Science, 15(2), 31–41. https://doi.org/10.23743/acs-2019-11
  • [7] Falkowicz, K., Ferdynus, M., & Wysmulski, P. (2015). FEM analysis of critical loads plate with cut-out. Applied Computer Science, 11(2), 43-49.
  • [8] Ha, H.-Y., Jang, J. H., Lee, T.-H., Won, C., Lee, C.-H., Moon, J., & Lee, C.-G. (2018). Investigation of the Localized Corrosion and Passive Behavior of Type 304 Stainless Steels with 0.2–1.8 wt % B. Materials, 11(11), 2097. https://doi.org/10.3390/ma11112097
  • [9] Haizhou, W. (2020). Geosynthetic material tensile strength detection device for hydraulic engineering detection. CN212254881 (U), 2020-12-29, Tianjin Xinan Eng Testing Co Ltd.
  • [10] Hamidah, I., Wati, R., & Hamdani, R. A. (2018). Analysis of AISI 304 Tensile Strength as an Anchor Chain of Mooring System. IOP Conference Series: Materials Science and Engineering, 367, 012058. https://doi.org/10.1088/1757-899X/367/1/012058
  • [11] ISO 4136:2012 Destructive tests on welds in metallic materials—Transverse tensile test. (2012). ISO.
  • [12] ISO 6892-1: Metallic materials – Tensile testing – Part 1: Method of test at room temperature. (2010). ISO.
  • [13] Janeczek, A., Tomków, J., & Fydrych, D. (2021). The Influence of Tool Shape and Process Parameters on the Mechanical Properties of AW-3004 Aluminium Alloy Friction Stir Welded Joints. Materials, 14(12), 3244. https://doi.org/10.3390/ma14123244
  • [14] Jonak, J., Karpiński, R., & Wójcik, A. (2021). Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium—Part II. Materials, 14(14), 3880. https://doi.org/10.3390/ma14143880
  • [15] Kawecki, B., & Podgórski, J. (2017). Numerical results quality in dependence on abaqus plane stress elements type in big displacements compression test. Applied Computer Science, 13(4), 56–64. https://doi.org/10.23743/acs2017-29
  • [16] Kilicaslan, M. F., Elburni, S. I., & Akgul, B. (2021). The Effects of Nb Addition on the Microstructure and Mechanical Properties of Melt Spun Al-7075 Alloy. Advances in Materials Science, 21(2), 16–25. https://doi.org/10.2478/adms-2021-0008
  • [17] Kłonica, M. (2018). Analysis of the effect of selected factors on the strength of adhesive joints. IOP Conference Series: Materials Science and Engineering, 393, 012041. https://doi.org/10.1088/1757- 899X/393/1/012041
  • [18] Kowal, M., & Szala, M. (2020). Diagnosis of the microstructural and mechanical properties of over century-old steel railway bridge components. Engineering Failure Analysis, 110, 104447. https://doi.org/10.1016/j.engfailanal.2020.104447
  • [19] Lubas, M., & Witek, L. (2021). Influence of Hole Chamfer Size on Strength of Blind Riveted Joints. Advances in Science and Technology. Research Journal, 15(2), 49–56. https://doi.org/10.12913/22998624/135632
  • [20] Lyalin Mikhajlovich, V., Zykov Mikhajlovich, S., & Sidorov Aleksandrovich, R. (2021). Installation for Dynamic Tensile Testing of Flat Samples of Materials. RU2744319 (C1). Federalnoe Gosudarstvennoe Byudzhetnoe Obrazovatelnoe Uchrezhdenie Vysshego Obrazovaniya Tulskij Gos.
  • [21] Łabanowski, J., Jurkowski, M., Fydrych, D., & Rogalski, G. (2017). Durability of welded water supply pipelines made of austenitic stainless steels. Welding Technology Review, 89(8), 35–40. https://doi.org/10.26628/wtr.v89i8.801
  • [22] Macek, W., Branco, R., Trembacz, J., Costa, J. D., Ferreira, J. A. M., & Capela, C. (2020). Effect of multiaxial bending-torsion loading on fracture surface parameters in high-strength steels processed by conventional and additive manufacturing. Engineering Failure Analysis, 118, 104784. https://doi.org/10.1016/j.engfailanal.2020.104784
  • [23] Macek, W., Szala, M., Trembacz, J., Branco, R., & Costa, J. (2020). Effect of non-zero mean stress bendingtorsion fatigue on fracture surface parameters of 34CrNiMo6 steel notched bars. Production Engineering Archives, 26(4), 167-173. https://doi.org/10.30657/pea.2020.26.30
  • [24] Machrowska, A., Karpiński, R., Jonak, J., Szabelski, J., & Krakowski, P. (2020). Numerical prediction of the component-ratio-dependent compressive strength of bone cement. Applied Computer Science, 16(3), 88–101. https://doi.org/10.23743/acs-2020-24
  • [25] Mahmood, M. A., Popescu, A. C., Oane, M., Chioibasu, D., Popescu-Pelin, G., Ristoscu, C., & Mihailescu, I. N. (2021). Grain refinement and mechanical properties for AISI304 stainless steel single-tracks by laser melting deposition: Mathematical modelling versus experimental results. Results in Physics, 22, 103880. https://doi.org/10.1016/j.rinp.2021.103880
  • [26] Nedeloni, M. D., Birtărescu, E., Nedeloni, L., Ene, T., Băra, A., & Clavac, B. (2018). Cavitation Erosion and Dry Sliding Wear Research on X5CrNi18-10 Austenitic Stainless Steel. IOP Conference Series: Materials Science and Engineering, 416, 012028. https://doi.org/10.1088/1757-899X/416/1/012028
  • [27] Nowacki, J., Sajek, A., & Matkowski, P. (2016). The influence of welding heat input on the microstructure of joints of S1100QL steel in one-pass welding. Archives of Civil and Mechanical Engineering, 16(4), 777–783. https://doi.org/10.1016/j.acme.2016.05.001
  • [28] Pańcikiewicz, K., Świerczyńska, A., Hućko, P., & Tumidajewicz, M. (2020). Laser Dissimilar Welding of AISI 430F and AISI 304 Stainless Steels. Materials, 13(20), 4540. https://doi.org/10.3390/ma13204540
  • [29] Pezowicz, C., Szotek, S., Kobielarz, M., & Wudarczyk, S. (2016). Device for biaxial stretching of biological samples. PL412122 (A1), 2016-11-07, Wojewódzki Szpital Specjalistyczny We Wrocławiu.
  • [30] Rout, M. (2020). Texture-tensile properties correlation of 304 austenitic stainless steel rolled with the change in rolling direction. Materials Research Express, 7(1), 016563. https://doi.org/10.1088/2053-1591/ab677c
  • [31] Różyło, P., Wysmulski, P., & Falkowicz, K. (2017). Fem and Experimental Analysis of Thin-Walled Composite Elements Under Compression. International Journal of Applied Mechanics and Engineering, 22(2), 393–402. https://doi.org/10.1515/ijame-2017-0023
  • [32] Rudawska, A., Zaleski, K., Miturska, I., & Skoczylas, A. (2019). Effect of the Application of Different Surface Treatment Methods on the Strength of Titanium Alloy Sheet Adhesive Lap Joints. Materials, 12(24), 4173. https://doi.org/10.3390/ma12244173
  • [33] Sarre, B., Flouriot, S., Geandier, G., Panicaud, B., & de Rancourt, V. (2016). Mechanical behavior and fracture mechanisms of titanium alloy welded joints made by pulsed laser beam welding. Procedia Structural Integrity, 2, 3569–3576. https://doi.org/10.1016/j.prostr.2016.06.445
  • [34] Skowrońska, B., Chmielewski, T., Kulczyk, M., Skiba, J., & Przybysz, S. (2021). Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusion. Materials, 14(6), 1537. https://doi.org/10.3390/ma14061537
  • [35] Szala, M., Chocyk, D., Skic, A., Kamiński, M., Macek, W., & Turek, M. (2021). Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6. Materials, 14(9), 2324. https://doi.org/10.3390/ma14092324
  • [36] Szala, M., & Łukasik, D. (2018). Pitting Corrosion of the Resistance Welding Joints of Stainless Steel Ventilation Grille Operated in Swimming Pool Environment. International Journal of Corrosion, 2018, 9408670. https://doi.org/10.1155/2018/9408670
  • [37] Szala, M., Sawa, M., & Walczak, M. (2021). Device for specimens uniaxially tensile strength tesitng (Urządzenie do statycznego, jednoosiowego rozciągania próbek) (Poland Patent Nr P.437489).
  • [38] Szala, M., Szafran, M., Macek, W., Marchenko, S., & Hejwowski, T. (2019). Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Advances in Science and Technology. Research Journal, 13(4), 151–161. https://doi.org/10.12913/22998624/113244
  • [39] Szala, M., Winiarski, G., Wójcik, Ł., & Bulzak, T. (2020). Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness, and Strain-Hardening Coefficients of 42CrMo4 Steel. Materials, 13(9), 2022. https://doi.org/10.3390/ma13092022
  • [40] Szklarek, K., & Gajewski, J. (2020). Optimisation of the Thin-Walled Composite Structures in Terms of Critical Buckling Force. Materials, 13(17), 3881. https://doi.org/10.3390/ma13173881
  • [41] Świć, A., Gola, A., Sobaszek, Ł., & Orynycz, O. (2020). Control of Machining of Axisymmetric Low-Rigidity Parts. Materials, 13(21), 5053. https://doi.org/10.3390/ma13215053
  • [42] Zagórski, I., Kulisz, M., Kłonica, M., & Matuszak, J. (2019). Trochoidal Milling and Neural Networks Simulation of Magnesium Alloys. Materials, 12(13), 2070. https://doi.org/10.3390/ma12132070
  • [43] Zheng, C., Liu, C., Ren, M., Jiang, H., & Li, L. (2018). Microstructure and mechanical behavior of an AISI 304 austenitic stainless steel prepared by cold- or cryogenic-rolling and annealing. Materials Science and Engineering: A, 724, 260–268. https://doi.org/10.1016/j.msea.2018.03.105
  • [44] Żebrowski, R., Walczak, M., Korga, A., Iwan, M., & Szala, M. (2019). Effect of Shot Peening on the Mechanical Properties and Cytotoxicity Behaviour of Titanium Implants Produced by 3D Printing Technology. Journal of Healthcare Engineering, 2019, 8169538. https://doi.org/10.1155/2019/8169538
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b06712f-eb5a-4b70-931a-92e882521eef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.