PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contributions of flexor hallucis longus and brevis muscles to isometric toe flexor force production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Morphological differences between the two primary great toe flexors – flexor hallucis longus (FHL) and flexor hallucis brevis (FHB) – likely drive differences in how these muscles contribute to functional toe flexor torque production. The aim of the study was to investigate FHL and FHB activation in two isometric toe flexion tasks – one called a “toe-pushing” task with the metatarsophalangeal (MTP) joints dorsiflexed and the interphalangeal (IP) joints in neutral and another called a “toe-gripping” task with the MTP joints in neutral and flexed IP joints. Methods: Twenty participants’ FHL and FHB muscles were instrumented with intramuscular electromyography electrodes. Muscle activation was normalized to a maximum voluntary contraction and compared between the two isometric toe flexor force production tasks. Results: Overall, participants utilized these two toe flexors completely differently in the two tasks. In the toe-gripping task, the FHL was activated to a much greater extent than the FHB. In fact, 18 our of 20 participants activated FHL at more than 70% maximum voluntary contraction and half of participants activated FHB at less than 10%. In contrast, muscle activation during the toe-pushing task appeared more reliant on the FHB for most participants. Conclusions: Different contributions from the FHL and FHB to toe flexor force production in these two tasks are potentially driven by differences in muscle functional length among other factors. These findings help to inform the selection of rehabilitation and training exercises meant to preferentially target intrinsic or extrinsic foot musculature.
Słowa kluczowe
Rocznik
Strony
91--99
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
  • Department of Kinesiology, California State University East Bay, Hayward, CA, USA
  • Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
  • Department of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
  • Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
  • Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
Bibliografia
  • [1] FARRIS D.J., KELLY L.A., CRESSWELL A.G., LICHTWARK G.A., The functional importance of human foot muscles for bipedal locomotion, Proc. Natl. Acad. Sci. U.S.A., 2019, 116 (5), 1645–1650, https://doi.org/10.1073/pnas.1812820116
  • [2] GOLDMANN J.P., BRÜGGEMANN G.P., The potential of human toe flexor muscles to produce force, J. Anat., 2012, 221 (2), 187–194, https://doi.org/10.1111/j.1469-7580.2012.01524.x
  • [3] HAKIM-ZARGAR M., ARONOW M.S., GIBSON L., OBOPILWE E., Implications for the anatomy of the flexor hallucis brevis insertion, Foot Ankle Int., 2010, 31 (1), 65–68, https://doi.org/ 10.3113/FAI.2010.0065
  • [4] KELLY L.A., CRESSWELL A.G., RACINAIS S., WHITELEY R., LICHTWARK G., Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch, J. R. Soc. Interface, 2014, 11, 20131188, https://doi.org/10.1098/rsif.2013.1188
  • [5] KURIHARA T., ROWLEY M., REISCHL S., BAKER L., KULIG K., Effect of a task’s postural demands on medial longitudinal arch deformation and activation of foot intrinsic and extrinsic musculature, Acta Bioeng. Biomech., 2020, 22 (4), 1–15, https:// doi.org/10.37190/ABB-01623-2020-02
  • [6] KURIHARA T., TERADA M., NUMASAWA S., KUSAGAWA Y., MAEO S., KANEHISA H., ISAKA T., Effects of age and sex on association between toe muscular strength and vertical jump performance in adolescent populations, PLoS One, 2021, 16 (12), e0262100, https://doi.org/10.1371/journal.pone.0262100
  • [7] KURIHARA T., YAMAUCHI J., OTSUKA M., TOTTORI N., HASHIMOTO T., ISAKA T., Maximum toe flexor muscle strength and quantitative analysis of human plantar intrinsic and extrinsic muscles by a magnetic resonance imaging technique, J. Foot Ankle Res., 2014, 7, 26–31, https://doi.org/ 10.1186/1757-1146-7-26
  • [8] KUSAGAWA Y., KURIHARA T., MAEO S., SUGIYAMA T., KANEHISA H., ISAKA T., Associations between the size of individual plantar intrinsic and extrinsic foot muscles and toe flexor strength, J. Foot Ankle Res., 2022, 15 (1), 22, https:// doi.org/10.1186/s13047-022-00532-9
  • [9] LAI Z., PANG H., HU X., DONG K., WANG L., Effects of intrinsic-foot-muscle exercise combined with the lower extremity resistance training on postural stability in older adults with fall risk: study protocol for a randomised controlled trial, Trials, 2021, 22 (1), 587, https://doi.org/10.1186/s13063-021-05554-5
  • [10] LEE S.S.M., PIAZZA S.J., Built for speed: musculoskeletal structure and sprinting ability, J. Exp. Biol., 2009, 212 (Pt 22), 3700–3707, https://doi.org/10.1242/jeb.031096
  • [11] LYNN S.K., PADILLA R.A., TSANG K.K.W., Differences in static- and dynamic-balance task performance after 4 weeks of intrinsic-foot-muscle training: the short-foot exercise versus the towel-curl exercise, J. Sport Rehabil., 2012, 21 (4), 327–333, https://doi.org/10.1123/jsr.21.4.327
  • [12] DE MAESENEER M., MOYSON N., LENCHIK L., CATTRYSSE E., SCAFOGLIERI A., ROOSE R., SHAHABPOUR M., MR imaginganatomical correlation of the metatarsophalangeal joint of the hallux: Ligaments, tendons, and muscles, Eur. J. Radiol., 2018, 106, 14–19, https://doi.org/10.1016/j.ejrad.2018.07.003
  • [13] MICKLE K.J., ANGIN S., CROFTS G., NESTER C.J., Effects of age on strength and morphology of toe flexor muscles, J. Orthop. Sports Phys. Ther., 2016, 46 (12), 1065–1070, https://doi.org/ 10.2519/jospt.2016.6597
  • [14] PÉREZ OLIVERA A.L., SOLAN M.C., KARAMANIDIS K., MILEVA K.N., JAMES D.C., A voluntary activation deficit in m. abductor hallucis exists in asymptomatic feet, J Biomechanics, 2022, 130, 110863. https://doi.org/10.1016/j.jbiomech. 2021.110863
  • [15] PEROTTO A.O., DELAGI E.F., IAZZETTI J., MORRISON D., Anatomical Guide for the Electromyographer, 5th ed., Charles C Thomas Publisher, 2011.
  • [16] PRETTERKLIEBER B., The high variability of the chiasma plantare and the long flexor tendons: Anatomical aspects of tendon transfer in foot surgery, Ann. Anat., 2017, 211, 21–32, https://doi.org/10.1016/j.aanat.2017.01.011
  • [17] RIDGE S.T., ROWLEY K.M., KURIHARA T., MCCLUNG M., TANG J., REISCHL S., KULIG K., Contributions of Intrinsic and Extrinsic Foot Muscles during Functional Standing Postures, Biomed Res. Int., 2022, 7708077, https://doi.org/ 10.1155/2022/7708077
  • [18] SAEKI J., IWANUMA S., TORII S., Force Generation on the Hallux Is More Affected by the Ankle Joint Angle than the Lesser Toes: An In Vivo Human Study, Biology (Basel)., 2021, 10 (1), 48, https://doi.org/10.3390/biology10010048
  • [19] SOYSA A., HILLER C., REFSHAUGE K., BURNS J., Importance and challenges of measuring intrinsic foot muscle strength, J. Foot Ankle Res., 2012, 5, 29–42, https://doi.org/10.1186/ 1757-1146-5-29
  • [20] YUASA Y., KURIHARA T., ISAKA T., Relationship Between Toe Muscular Strength and the Ability to Change Direction in Athletes, J. Hum. Kinet., 2018, 64, 47–55, https://doi.org/ 10.1515/hukin-2017-0183
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b055a25-975f-43e6-9a27-d38a0a40b9f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.