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Abstract

Outlier detection aims to find a data sample that is significantly different from other data
samples. Various outlier detection methods have been proposed and have been shown
to be able to detect anomalies in many practical problems. However, in high dimen-
sional data, conventional outlier detection methods often behave unexpectedly due to
a phenomenon called the curse of dimensionality. In this paper, we compare and ana-
lyze outlier detection performance in various experimental settings, focusing on text data
with dimensions typically in the tens of thousands. Experimental setups were simulated
to compare the performance of outlier detection methods in unsupervised versus semi-
supervised mode and uni-modal versus multi-modal data distributions. The performance
of outlier detection methods based on dimension reduction is compared, and a discussion
on using k-NN distance in high dimensional data is also provided. Analysis through ex-
perimental comparison in various environments can provide insights into the application
of outlier detection methods in high dimensional data.
Keywords: Curse of dimensionality, Dimension reduction, High dimensional text data,
Outlier detection.

1 Introduction

An outlier is defined as an observation which
deviates so much from other observations enough
to arouse suspicions that it was generated by a dif-
ferent mechanism [1]. Outlier detection has been
a hot research topic in recent years and has been
applied to a variety of problems, such as fraud de-
tection, intrusion detection in computer networks,
system fault detection, and unexpected error detec-
tion in databases [2, 3, 4, 5, 6].

Outlier detection methods can be classified into
three categories according to the learning environ-
ment. The first category is a supervised method

that detects outliers by learning a binary classifier
when training data consisting of normal data and
outliers is given. However, there is a high proba-
bility of unbalanced learning where the amount of
outliers and normal data is significantly different.
The second category is unsupervised learning with-
out data labels where it detects data samples that
are highly likely to be outliers on the premise that
most of the given data are normal and only a few
outliers are included. The third category is semi-
supervised learning, which detects whether the test
data are normal or outliers given the training data
consisting only of normal data. In situations where
it is easy to collect data under normal conditions,
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the approach of modeling the data distribution from
the normal training data and detecting outliers in the
test data based on it may be practical for some ap-
plication problems.

On the other hand, according to computational
methodologies employed in outlier detection meth-
ods, they can be roughly categorized to distance-
based, density-based, tree-based, clustering-based,
and neural network-based methods. A detailed sur-
vey of outlier detection methods can be found in
several papers including [2, 7, 8]. The performance
of the outlier detection method has been shown to
be remarkable in many practical problems, but its
application to high dimensional data is still diffi-
cult. In many cases, the experiments for high di-
mensional data were performed only for data with
hundreds or fewer data dimensions, and not for data
with more than tens of thousands of data dimen-
sions such as text data [9, 10, 11].

Due to the curse of dimensionality in high di-
mensional space, the phenomenon referred to as
data sparsity occurs where all pairs of data sam-
ples are almost equidistant in high dimensional data
space [2]. This can be problematic in outlier detec-
tion methods which rely on distance computation
such as in clustering or density estimation process.
In this paper, we conduct comparative studies for
outlier detection methods in high dimensional data.
Focusing on text data with dimensions typically in
the tens of thousands, the performance of outlier de-
tection methods is compared in various experimen-
tal settings:

– Outlier detection in unsupervised mode of multi-
modal normal data.

– Outlier detection in unsupervised mode of uni-
modal normal data.

– Outlier detection in semi-supervised mode of
multi-modal normal data.

– Outlier detection based on dimension reduction
by feature selection or weighted feature combi-
nations.

The remainder of the paper is organized as fol-
lows. In Section 2 we review outlier detection meth-
ods which have been applied in high dimensional
data. In particular, a dimension reduction based out-
lier detection method is introduced [12]. Dimension

reduction is performed by a transformation maxi-
mizing kurtosis which can be interpreted as the de-
gree of presence of outliers in the distribution, and
in the transformed space outlier detection is applied.
In Section 3, using text data, experimental compar-
ison and analysis are provided under various exper-
imental setting of unsupervised or semi-supervised
mode. The discussion follows in Section 4.

2 Outlier Detection methods

In this section, we review outlier detection
methods that have shown good performance in var-
ious application problems.

2.1 Outlier Detection based on the Dis-
tance to k-Nearest Neighbors (KNN)

Distance-based outlier detection is simple and
intuitive, but the outlier detection performance is
often competitive to more complicated methods. In
[13], the average or maximum of the distances to
the k nearest neighbors is used as the outlier score
of a data sample. The greater the distance to the k
nearest neighbors, the more likely it is to be an out-
lier. Instead of computing outlier scores, a binary
decision can be made that a data sample is deter-
mined as an outlier when less than k data samples
lie within the radius R of the data sample [14].

The main challenge in distance-based meth-
ods is the scalability since distances between all
pairs of data samples should be computed, and ef-
forts to avoid high computational cost are being
made. Partition-based pruning in [13] was used
for speedup where data are first partitioned using
a clustering algorithm and the partitions that can-
not possibly contain the top n outliers are pruned.
In [15], a sampling-based outlier detection method
was proposed where a small set of samples are taken
and an outlier score is measured by the distance
from a data sample to its nearest neighbor in the
sample set.

In various outlier detection methods, it is of-
ten necessary to calculate the distance between data
samples during the process such as clustering or
density estimation. However, in high dimensional
space, the notion of distances may not work as in
low dimensional data space. As the data dimension
increases, the feature space becomes increasingly
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sparse and the maximum and the minimum distance
between the pairs of data samples become indis-
cernible compared to the minimum distance [16].
In the experiments using text data of Section 3, the
performance of a distance-based outlier detection
method is experimentally compared to other meth-
ods and the impact from the curse of dimensionality
on outlier detection is evaluated.

2.2 Angle-based Outlier Detection
(ABOD)

Angle-based outlier detection (ABOD) com-
putes an outlier score using the variances of angles
between the difference vectors to pairs of other data
samples from a data sample [17]. The idea is moti-
vated by the following intuition: For a data sample
within a cluster, the angles between difference vec-
tors to pairs of other points differ widely, but for
outliers, the angles to the most pairs of data sam-
ples will be small since most data samples are clus-
tered in some directions [17]. The angle-based out-
lier factor ABOF(x) for a data sample x is computed
as

ABOF(x) = variancez1,z2∈D

(
< xz1,xz2 >

∥xz1∥2∥xz2∥2

)
,

(1)
where D is a given data set, < ·, · > denotes the
scalar product, and xzi is the difference vector zi−x.
The angle is weighted less if the corresponding data
sample is far from the query data sample. In order
to reduce the time complexity arising from dealing
with all pairs of data samples for each data sam-
ple, FastABOD approximate ABOD by using only
the pairs between k nearest neighbors instead of all
pairs of data samples. In the experiments in Section
3, FastABOD was used.

2.3 Outlier Detection based on histograms
(HBOS)

HBOS (histogram-based outlier score) assumes
independence of the features which makes it fast at
the cost of less precision [18]. For each feature, an
univariate histogram is constructed by using static
bin-width or dynamic bin-width histograms. The
frequency of samples falling into each bin is used
as an estimate of the density. After normalizing the
histograms such that the maximum height is 1, the
outlier score for a data sample x is calculated us-

ing the corresponding height of the bins where it is
located such as

HBOS(x) =
d

∑
i=1

log
(

1
histi(x)

)
, (2)

where d is the number of features.

2.4 Outlier Detection based on One-class
SVM (OSVM)

Given a data set from an underlying probabil-
ity distribution P, one-class SVM (Support vector
machine) tries to estimate a simple subset S of in-
put space such that the probability that a test point
drawn from P lies outside of S is controlled by some
pre-specified value ν between 0 and 1 [19]. It has
been applied for outlier detection independently or
in combination with other methods [20, 21].

Given data {x1, · · · ,xn}, one-class SVM maps
the data into the feature space corresponding to the
kernel and finds a hyperplane to separate them from
the origin with maximum margin by solving the op-
timization problem

min
w,ρ,ξ

1
2
∥w∥2 +

1
νn ∑

i
ξi −ρ (3)

sub ject to w ·Φ(xi)≥ ρ−ξi, ξi ≥ 0,

where ξi’s are slack variables penalizing data points
on the negative side of a separating hyperplane
w ·Φ(x)−ρ = 0. ν is an upper bound on the frac-
tion of data points outside the estimated region and
also a lower bound on the fractions of support vec-
tors [19].

2.5 Outlier Detection based on Local Out-
lier Factor (LOF)

LOF (Local Outlier Factor) measures the ratio
of the peripheral density of a given data sample to
that of neighboring data samples [22]. It is known
that LOF works well when the regions of differ-
ent densities exist. While local reachability density
(lrd) of a data sample x is computed from the in-
verse of the average reachability distance to the k
nearest neighbors of x, kNN(x), LOF is defined as

LOF(x) =
1
k ∑z∈kNN(x) lrd(z)

lrd(x)
. (4)

LOF provides an indication of whether x is in a
denser or sparser region of the neighborhood than
its neighbors [23, 6].
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While LOF addresses with the problem of the
local density variation, selecting the value for k is
not trivial and the performance of LOF can be sen-
sitive to the value of k. If groups of points might be
close to one another by chance, a small k will in-
crease the outlier scores of data samples in their lo-
cality [2]. On the other hand, a large k might cause
to miss local outliers.

2.6 Outlier Detection using Isolation For-
est (IF)

Among various outlier detection methods, Iso-
lation Forest [24] is known to be computationally
efficient and very effective in detecting outliers.
Isolation Forest builds an ensemble of binary trees
which are grown by randomly selecting a split-
ting feature and a random split value between the
maximum and minimum values of the selected fea-
ture at each node. Under the premise that out-
liers are susceptible to isolation than normal data,
outlier scores are computed by the average path
length on Isolation trees. It has shown the compe-
tent outlier detection performance in various prob-
lems [25, 26, 27, 28].

Isolation Forest is a widely used outlier detec-
tion method, but it is difficult to apply to high di-
mensional data. Since tree height is limited by
ceiling(log2ψ) for the sub-sampling size ψ, the to-
tal number of attributes which can be selected for
node partitioning is also limited. Isolation For-
est can also suffer from the sparse, irrelevant and
noisy attributes in high dimensional data. In [24],
the weighted selection of attributes by the kurto-
sis value was proposed for the application in high
dimensional data. Kurtosis is a statistical measure
for the thickness of the tail in the probability dis-
tribution of a real-valued random variable, which
can be interpreted as the degree of presence of out-
liers in the distribution [29]. In [30] and [31], a
method of partitioning data by a hyperplane with a
random slope at each node of an isolation tree has
been proposed. However, the hypothesis space of
all hyperplanes with random slopes is too large in
high dimensional space and the experiments were
performed only for the data with the dimension be-
low 40 and the performance for high dimensional
data was not tested [31].

2.7 Outlier Detection based on Feature
bagging (BLOF, BKNN)

Subspace outlier detection finds outliers in sub-
spaces of the original data space. In [32], the sub-
space outlier score of a data sample is given by
the degree of the deviation from the neighbors in
an axis-parallel hyperplane spanned by the neigh-
bors. Subspace outlier detection is often performed
by combining outlier detection results in subspaces
by random selection into an ensemble [33].

In ensemble construction of [33], the sub-
sample size is always the same as the original input
sample size, but the features are randomly sampled
from half of the features to all features. The outlier
score is computed by averaging or taking the max-
imum of all base detectors. In [33], LOF is used
as the base outlier detection method. However, any
detector such as KNN could be used as the base de-
tector. In the experiments in Section 3, we test fea-
ture bagging based on LOF and KNN, denoted as
BLOF and BKNN, respectively.

2.8 Outlier Detection based on Principal
Component Analysis (PCA)

Principal component analysis (PCA) is a tra-
ditional linear dimension reduction method where
the projection into the directions with the largest
variance in data is pursued [34]. The covariance
matrix of the data is decomposed to orthogonal
vectors, called eigenvectors, associated with eigen-
values, and the eigenvectors with high eigenvalues
which capture most of the variance in the data are
used for dimension reduction. However, when it
comes to outlier detection, outliers and normal data
samples can be better distinguished in the hyper-
plane of eigenvectors with small eigenvalues.

In [35] and [2], an outlier score is computed by
the weighted sum of the projected distance of a data
sample to the centroid along the direction of eigen-
vectors as follows:

Score(x) =
d

∑
i=1

|(x−µ) · ei|2

λi
, (5)

where λi is an eigenvalue corresponding to an
eigenvector ei. d usually denotes data dimension,
but when the number of data samples is smaller
than data dimension such as in high dimensional
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text data, d can be set as the minimum value among
the number of data samples and data dimension.

2.9 Outlier Detection based on AutoEn-
coder (AE)

Auto Encoder (AE) is a type of neural networks
for learning useful data representations in an unsu-
pervised manner. An autoencoder consists of two
parts, the encoder ϕ and the decoder ψ, and it is
trained so that the reconstruction error of data in-
stances in a training set X

L = ∑
x∈X

∥x−ψ(ϕ(x))∥2 (6)

is minimized. The larger the reconstruction error of
a test instance is, the greater the degree of its out-
lierness is [2, 6].

2.10 Outlier Detection based on dimen-
sion Reduction maximizing kurtosis
(IF/DR)

The kurtosis is the fourth standardized moment
of univariate random variable X , defined as

kurtosis(X) = E

[(
X −µ

σ

)4
]
=

µ4

σ4 , (7)

where µ4 is the fourth central moment and σ is the
standard deviation. The meaning of kurtosis can
be interpreted that data within one standard devi-
ation of the mean contribute virtually little to kur-
tosis, since raising a number that is less than 1 to
the fourth power makes it closer to zero. The only
data values that contribute to kurtosis in any mean-
ingful way are those outside the region of the peak,
i.e., the outliers [36]. Kurtosis reflects the shape of
a distribution and high kurtosis value means heavy
tails than normal. High values of kurtosis can arise
in the circumstances where the probability mass is
concentrated in the tails of the distribution. In [37],
2p orthogonal directions maximizing or minimiz-
ing the kurtosis value are obtained by eigenvector
computation, and in the projected space by the or-
thogonal directions outlier scores using a univari-
ate measure of outlyingness are used for outlier de-
tection. However, the experiments were performed
only for very small data sets with the dimension be-
low 5 and simulated data with the dimension be-
low 20.

Recently an outlier detection method based on
dimension reduction was introduced [12], where
new features maximizing kurtosis are extracted by
a transformation from the original feature space and
in the transformed feature space Isolation Forest is
modeled. Feature extraction by a transformation
which maximizes kurtosis can be performed using a
neural network with no hidden layers. Denoting the
weight on the edge connecting the node j of an in-
put layer and the node i (1≤ i≤ k) of an output layer
as wi j, kurtosis on the output node i can be com-
puted for a given input data {x1, · · · ,xn |xj ∈ Rd} as

kurtosisi =
1
n

n

∑
j=1

(
wixj +bi −µi

σi

)4

, (8)

where wi = [wi1, · · · ,wid ], and µi and σi are the
mean and standard deviation of {wixj +bi |1 ≤ j ≤
n} which is the mapping of xj’s to the node i of
the output layer. Using the standardization zi j =
wixj+bi−µi

σi
and applying the activation function f on

each output node, the objective function can be set
as

minimize
1

k n

k

∑
i=1

n

∑
j=1

f (−z4
i j). (9)

In the implementation by a mini-batch stochas-
tic method, batch normalization can be applied in
place of the standardization process zi j =

wixj+bi−µi
σi

.
Also instead of using all the original features as in-
put features, a subset of features with high kurtosis
can be used as input features of the neural network.
In the transformed data which is the output of the
neural network, Isolation Forest is applied for out-
lier detection. We denote this method as IF/DR. The
process for IF/DR can be summarized as follows:

1. Select s features with the highest kurtosis in the
original feature space.

2. Construct a neural network with s input nodes
and k output nodes.

3. Train the neural network to optimize the objec-
tive function in Eq. (9) by applying batch nor-
malization.

4. Compute the transformed representation of data
samples by the outputs of the trained neural net-
work.

5. Perform Isolation Forest in the transformed data
space.
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Table 1. The description of text data sets used for performance comparison.

Data classes number of features (nf) number of samples (ns)
bbc 5 17005 2225

reuter 3 15484 6656
20-ng 20 44713 18774
la12 6 21604 6279

sports 5 18324 8313
classic 4 12009 7094
ohscal 10 11465 11162

reviews 4 23220 3932

3 Experimental Comparison

In this section, we perform an experimental
comparison for outlier detection methods reviewed
in Section 2 in various experimental setups. Also a
discussion on using k-NN distances in high dimen-
sional data is provided.

3.1 Data Description

Eight text data sets were used for performance
comparison, and detailed description is given in Ta-
ble 1. The BBC News data consists of 2,225 news
data which belong to five categories: business, en-
tertainment, politics, sport, and tech [38]. It was
preprocessed to have 17,005 terms by deleting spe-
cial symbols and numbers and removing terms ap-
pearing in only one document. Reuters-21578 was
downloaded from UCI machine learning repository
and the documents belonging to 135 TOPICS cate-
gories were used. After preprocessing by stopwords
removal, stemming, tf-idf transformation, and unit
norm, and excluding documents belonging to two
or more categories, there are 6,656 documents com-
posed of 15,484 terms. The two largest cate-
gories of 1 and 36 and the collection of the remain-
ing all the documents compose three classes. 20-
newsgroup (20-ng) data contains about 20,000 arti-
cles in 20 news groups divided into 5 categories 1.
After preprocessing the 20news-bydate version, we
constructed 18,774 text data with 44,713 terms. The
remaining five data sets were downloaded from the
site 2. The final data sets were constructed remov-
ing classes with less than 200 texts and terms with
frequencies less than or equal to 1.

3.2 Parameter setting for outlier detection
methods

Parameter setting of the compared methods is
summarized in Table 2. Most of the methods were
implemented using PyOD [39] which is a python
toolkit for outlier detection and all parameters were
set as default values in PyOD with few exception.
For example, in outlier detection based on autoen-
coders, the mini-batch size was set to 256 instead
of the default of 32, because of the frequent in-
terruptions caused by division-by-zero occurrences
at batch size 32. The method, IF/DR, was imple-
mented by PyTorch [40] and the parameter values
to use as default values for all text data sets were de-
termined by preliminary experiments on BBC data.

3.3 Unsupervised Mode: Multi-class Nor-
mal Data

The first experiment was to test the performance
of outlier detection methods in unsupervised mode
where a small percent of outliers are mixed with
normal data with their true labels unknown. In par-
ticular, normal data were randomly selected from
multiple classes to simulate a multi-modal distribu-
tion for normal data. For each data set in Table 1,
10% of data from one class was randomly selected
as outliers, and data of all other classes were set as
normal data. The performance of the outlier detec-
tion method was measured using Area Under the
Curve (AUC), and the average AUC was computed
by repeating the experiment about 20 times while
using each class as an outlier class the same number
of times. In 20-newsgroup data, the experiment was
performed while repeating 20 times of setting all

1http://people.csail.mit.edu/jrennie/20Newsgroups
2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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discussion on using k-NN distances in high dimen-
sional data is provided.

3.1 Data Description

Eight text data sets were used for performance
comparison, and detailed description is given in Ta-
ble 1. The BBC News data consists of 2,225 news
data which belong to five categories: business, en-
tertainment, politics, sport, and tech [38]. It was
preprocessed to have 17,005 terms by deleting spe-
cial symbols and numbers and removing terms ap-
pearing in only one document. Reuters-21578 was
downloaded from UCI machine learning repository
and the documents belonging to 135 TOPICS cate-
gories were used. After preprocessing by stopwords
removal, stemming, tf-idf transformation, and unit
norm, and excluding documents belonging to two
or more categories, there are 6,656 documents com-
posed of 15,484 terms. The two largest cate-
gories of 1 and 36 and the collection of the remain-
ing all the documents compose three classes. 20-
newsgroup (20-ng) data contains about 20,000 arti-
cles in 20 news groups divided into 5 categories 1.
After preprocessing the 20news-bydate version, we
constructed 18,774 text data with 44,713 terms. The
remaining five data sets were downloaded from the
site 2. The final data sets were constructed remov-
ing classes with less than 200 texts and terms with
frequencies less than or equal to 1.

3.2 Parameter setting for outlier detection
methods

Parameter setting of the compared methods is
summarized in Table 2. Most of the methods were
implemented using PyOD [39] which is a python
toolkit for outlier detection and all parameters were
set as default values in PyOD with few exception.
For example, in outlier detection based on autoen-
coders, the mini-batch size was set to 256 instead
of the default of 32, because of the frequent in-
terruptions caused by division-by-zero occurrences
at batch size 32. The method, IF/DR, was imple-
mented by PyTorch [40] and the parameter values
to use as default values for all text data sets were de-
termined by preliminary experiments on BBC data.

3.3 Unsupervised Mode: Multi-class Nor-
mal Data

The first experiment was to test the performance
of outlier detection methods in unsupervised mode
where a small percent of outliers are mixed with
normal data with their true labels unknown. In par-
ticular, normal data were randomly selected from
multiple classes to simulate a multi-modal distribu-
tion for normal data. For each data set in Table 1,
10% of data from one class was randomly selected
as outliers, and data of all other classes were set as
normal data. The performance of the outlier detec-
tion method was measured using Area Under the
Curve (AUC), and the average AUC was computed
by repeating the experiment about 20 times while
using each class as an outlier class the same number
of times. In 20-newsgroup data, the experiment was
performed while repeating 20 times of setting all

1http://people.csail.mit.edu/jrennie/20Newsgroups
2http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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Table 2. Parameter setting in outlier detection methods

Methods Parameters Values
KNN number of neighbors for k neighbors queries k=5

metric used for distance computation Euclidean
outlier score: the distance to the k-th neighbor

ABOD number of neighbors to use for k neighbors queries k=10
HBOS number of bins 10
OSVM RBF kernel function: exp(-γ∥x1 − x2∥2 ) γ = 1/nf

an upper bound on the fraction of training errors ν =0.5
LOF number of neighbors for local density estimation k=20

metric used for distance computation Euclidean
IF number of Isolation trees in the ensemble 100

sub-sampling size for each Isolation tree min(256, ns)
PCA number of principal components to keep min(ns, nf)

standardization preprocessed
BLOF the base detector LOF or KNN
BKNN number of base estimators in the ensemble 10

outlier score by the average of all detectors
AE the number of neurons per layers [nf, 64, 32, 32, 64, nf]

activation function in hidden layers relu
number of epochs to train the model 100
mini batch size 256
the percentage of data to be used for validation 0.1
batch normalization, Adam optimizer, dropout rate=0.2
L2 regularizer of 0.1, standardization preprocessed

IF/DR input features: s features with the highest kurtosis s = 0.15*nf
number of nodes in the output layer 100
activation function in the output layer sigmoid
number of epochs to train the model 10
mini batch size 200
batch normalization
Adam optimizer with learning rate 0.01, dropout rate=0.5

(nf: number of features, ns: number of data samples)

Table 3. The performance comparison of outlier detection methods in unsupervised mode of multi-class
normal and one-class outlier.

KNN ABOD HBOS OSVM LOF IF BLOF BKNN PCA AE IF/DR
bbc 0.84 0.721 0.557 0.738 0.707 0.533 0.753 0.703 0.852 0.899 0.867
20-ng 0.791 0.774 0.525 0.653 0.607 0.483 0.759 0.782 0.802 0.824 0.82
reuter 0.66 0.619 0.522 0.752 0.569 0.539 0.617 0.619 0.613 0.611 0.565
la12 0.749 0.647 0.519 0.682 0.639 0.5 0.7 0.657 0.704 0.728 0.709
sports 0.811 0.687 0.568 0.767 0.511 0.525 0.801 0.739 0.833 0.83 0.791
classic 0.591 0.491 0.596 0.748 0.781 0.556 0.693 0.614 0.702 0.742 0.782
ohscal 0.645 0.57 0.529 0.599 0.617 0.514 0.633 0.572 0.669 0.665 0.626
reviews 0.704 0.651 0.537 0.716 0.513 0.532 0.673 0.634 0.707 0.739 0.75
average 0.724 0.645 0.544 0.707 0.618 0.523 0.704 0.665 0.735 0.755 0.739
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Table 4. The performance comparison of outlier detection methods in unsupervised mode of one-class
normal and one-class outlier.

KNN ABOD HBOS OSVM LOF IF FLOF BKNN PCA AE IF/DR
bbc 0.91 0.795 0.591 0.955 0.754 0.613 0.828 0.841 0.897 0.903 0.937
20-ng 0.835 0.821 0.535 0.748 0.708 0.54 0.8 0.822 0.821 0.854 0.88
reuter 0.687 0.643 0.533 0.844 0.533 0.571 0.642 0.65 0.648 0.638 0.626
la12 0.854 0.74 0.565 0.904 0.666 0.566 0.784 0.751 0.737 0.746 0.794
sports 0.88 0.751 0.586 0.92 0.62 0.594 0.85 0.845 0.817 0.801 0.82
classic 0.853 0.761 0.535 0.9 0.785 0.542 0.855 0.773 0.723 0.758 0.847
ohscal 0.853 0.742 0.601 0.891 0.744 0.568 0.766 0.733 0.843 0.822 0.777
reviews 0.799 0.693 0.542 0.888 0.482 0.573 0.702 0.753 0.766 0.767 0.809
average 0.834 0.743 0.561 0.881 0.662 0.571 0.778 0.771 0.782 0.786 0.811

data in one category as normal data and randomly
selecting one class from the other category as an
outlier class.

Table 3 summarizes the average AUC for the
compared methods. Three methods, AE, IF/DR,
and PCA, obtained the higher performance than
other methods. One common characteristic in those
methods is that they utilize a weighted combination
of features. One of the differences between AE and
IF/DR is that IF/DR trains a simple neural network
with no hidden layers, whereas AE models an en-
coder and decoder with two hidden layers. Also, the
large performance difference between IF and IF/DR
shows that kurtosis and neural network-based fea-
ture extraction can construct a transformed space
which is effective in constructing an isolation for-
est.

3.4 Unsupervised Mode: One-class Nor-
mal Data

While the experiment in the previous section
simulated the environment where normal data are
drawn from multi-modal distribution, this experi-
ment simulates the case when the normal data come
from uni-modal distribution. For each data set
in Table 1, 5% among data from one class was
randomly selected as outliers, and all data of one
class among remaining classes was set as normal
data. The average AUC was measured by repeat-
ing the experiment for every pair of classes. In
20-newsgroup data, the experiment was repeated 20
times with random selection of normal and outlier
classes, respectively, from each pair of categories.

Table 4 summarizes the average AUC for the
compared methods. For each data set, the highest

AUC is marked as a bold face. Unlike in the exper-
iment of multi-class normal and one-class outlier,
OSVM outperforms the other methods significantly
and KNN showed the second best performance. It
demonstrates that the outlier detection by OSVM
can be a good choice when the normal data are con-
sidered to follow uni-modal distribution. The en-
semble of one-class SVMs combined with a clus-
tering algorithm has been applied for outlier de-
tection or classification and showed better perfor-
mance than single one-class SVM [41, 42]. Hence,
for data with multi-modal distribution, we can ex-
pect the utility of one-class SVMs combined with
a clustering method that can work well for high-
dimensional data.

3.5 Semi-supervised Mode: When Multi-
class Normal Data is Given as Training
Data

Unsupervised outlier detection assumes that no
class label is provided and that a small fraction of
outliers may exist in the given data. However, since
it is relatively easy to collect normal data compared
to outliers, it may be practical to perform outlier de-
tection when training data consisting only of normal
data is given. In this experiment, one class was set
as an outlier class and the remaining classes were
set as normal classes. Of the data from each nor-
mal class, 50% was used as training data. The re-
maining data samples of normal classes constituted
the test set together with data 50% from the out-
lier class. An outlier detection model is learned us-
ing normal training data and an outlier score on test
data is computed by applying the model. The AUC
(Area Under the Curve) is computed based on out-
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Table 4. The performance comparison of outlier detection methods in unsupervised mode of one-class
normal and one-class outlier.

KNN ABOD HBOS OSVM LOF IF FLOF BKNN PCA AE IF/DR
bbc 0.91 0.795 0.591 0.955 0.754 0.613 0.828 0.841 0.897 0.903 0.937
20-ng 0.835 0.821 0.535 0.748 0.708 0.54 0.8 0.822 0.821 0.854 0.88
reuter 0.687 0.643 0.533 0.844 0.533 0.571 0.642 0.65 0.648 0.638 0.626
la12 0.854 0.74 0.565 0.904 0.666 0.566 0.784 0.751 0.737 0.746 0.794
sports 0.88 0.751 0.586 0.92 0.62 0.594 0.85 0.845 0.817 0.801 0.82
classic 0.853 0.761 0.535 0.9 0.785 0.542 0.855 0.773 0.723 0.758 0.847
ohscal 0.853 0.742 0.601 0.891 0.744 0.568 0.766 0.733 0.843 0.822 0.777
reviews 0.799 0.693 0.542 0.888 0.482 0.573 0.702 0.753 0.766 0.767 0.809
average 0.834 0.743 0.561 0.881 0.662 0.571 0.778 0.771 0.782 0.786 0.811

data in one category as normal data and randomly
selecting one class from the other category as an
outlier class.

Table 3 summarizes the average AUC for the
compared methods. Three methods, AE, IF/DR,
and PCA, obtained the higher performance than
other methods. One common characteristic in those
methods is that they utilize a weighted combination
of features. One of the differences between AE and
IF/DR is that IF/DR trains a simple neural network
with no hidden layers, whereas AE models an en-
coder and decoder with two hidden layers. Also, the
large performance difference between IF and IF/DR
shows that kurtosis and neural network-based fea-
ture extraction can construct a transformed space
which is effective in constructing an isolation for-
est.

3.4 Unsupervised Mode: One-class Nor-
mal Data

While the experiment in the previous section
simulated the environment where normal data are
drawn from multi-modal distribution, this experi-
ment simulates the case when the normal data come
from uni-modal distribution. For each data set
in Table 1, 5% among data from one class was
randomly selected as outliers, and all data of one
class among remaining classes was set as normal
data. The average AUC was measured by repeat-
ing the experiment for every pair of classes. In
20-newsgroup data, the experiment was repeated 20
times with random selection of normal and outlier
classes, respectively, from each pair of categories.

Table 4 summarizes the average AUC for the
compared methods. For each data set, the highest

AUC is marked as a bold face. Unlike in the exper-
iment of multi-class normal and one-class outlier,
OSVM outperforms the other methods significantly
and KNN showed the second best performance. It
demonstrates that the outlier detection by OSVM
can be a good choice when the normal data are con-
sidered to follow uni-modal distribution. The en-
semble of one-class SVMs combined with a clus-
tering algorithm has been applied for outlier de-
tection or classification and showed better perfor-
mance than single one-class SVM [41, 42]. Hence,
for data with multi-modal distribution, we can ex-
pect the utility of one-class SVMs combined with
a clustering method that can work well for high-
dimensional data.

3.5 Semi-supervised Mode: When Multi-
class Normal Data is Given as Training
Data

Unsupervised outlier detection assumes that no
class label is provided and that a small fraction of
outliers may exist in the given data. However, since
it is relatively easy to collect normal data compared
to outliers, it may be practical to perform outlier de-
tection when training data consisting only of normal
data is given. In this experiment, one class was set
as an outlier class and the remaining classes were
set as normal classes. Of the data from each nor-
mal class, 50% was used as training data. The re-
maining data samples of normal classes constituted
the test set together with data 50% from the out-
lier class. An outlier detection model is learned us-
ing normal training data and an outlier score on test
data is computed by applying the model. The AUC
(Area Under the Curve) is computed based on out-
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Table 5. The performance comparison of outlier detection methods in semi-supervised mode.

KNN ABOD HBOS OSVM LOF IF BLOF BKNN PCA AE
bbc 0.917 0.69 0.501 0.74 0.886 0.484 0.744 0.253 0.734 0.706
20-ng 0.822 0.726 0.462 0.672 0.778 0.462 0.79 0.465 0.706 0.693
reuter 0.872 0.728 0.52 0.867 0.671 0.559 0.734 0.574 0.767 0.739
la12 0.804 0.64 0.507 0.674 0.766 0.515 0.693 0.423 0.665 0.642
sports 0.946 0.671 0.523 0.833 0.87 0.482 0.861 0.331 0.851 0.813
classic 0.885 0.424 0.539 0.795 0.902 0.511 0.75 0.286 0.669 0.647
ohscal 0.659 0.575 0.519 0.611 0.642 0.497 0.615 0.487 0.601 0.586
reviews 0.775 0.631 0.535 0.739 0.719 0.524 0.704 0.417 0.695 0.667
average 0.835 0.636 0.513 0.741 0.779 0.504 0.736 0.405 0.711 0.687

lier scores of test data. This process was repeated
about 20 times while changing the outlier class.

Table 5 summarizes the average AUC for the
compared methods. When the experimental results
are analyzed, it should be considered that some of
the methods are more suitable for outlier detection
in unsupervised mode. Nevertheless, the highest
detection performance by KNN in semi-supervised
mode is surprising, considering the phenomenon
by the curse of dimensionality in high dimensional
space. In the next section, we check the validity of
using k-NN distances for outlier detection in high-
dimensional data.

3.6 Discussion on Using k-NN Distance in
High Dimensional Space

It is known that due to data sparsity all pairs
of data samples are almost equidistant in high di-
mensional data space and the difference between
the maximum distance and minimum distance com-
pared to the minimum distance vanishes as the di-
mensionality increases. However, as shown in the
experiments of previous sections, outlier detection
based on the distance to k nearest neighbors showed
the performance of the high rank among the com-
pared methods, especially in semi-supervised mode
where normal training data are given.

We try to explain the reason why k nearest
neighbors-based outlier detection worked compe-
tently in spite of the phenomenon from the curse
of dimensionality. The research in [16] has shown
that the concentration effect of the distance mea-
sure only holds in the artificial scenario when the
one-dimensional distributions are independent and
identically distributed, and the curse of dimension-
ality is not the main problem for outlier detection

in high dimensional data. We conducted the exper-
iment to compare the distance from an outlier or
normal data to other data samples using text data in
Table 1.
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Figure 2. Comparison of outlier detection
performance by KNN while changing the value of
k. The average AUC in three experimental setups

is shown.

Two figures in the top row of Figure 1 compare
the maximum and minimum distances from normal
or outliers of the test data set to normal data samples
of the training set in semi-supervised mode of Sec-
tion 3.5, and two figures in the bottom row compare
the maximum and minimum distances between data
samples in unsupervised mode of Section 3.3. The
figures show that the average minimum distance
from outliers is greater than that from normal data
samples. On the other hand, the average maximum
distance from outliers is almost equal to or smaller
than that from normal data samples, implying that
the distance concentration effect is stronger in out-
liers than in normal data samples. Hence, the dis-
tance to the nearest neighbors in high dimensional
data can be used effectively for the discrimination
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Figure 1. Comparison of the maximum and minimum distances from normal or outliers to other data
samples. top row: measured in semi-supervised mode, bottom row: unsupervised mode

of outliers and normal data samples with the care-
ful selection of the value k in k-NN search.

Next, to test the sensitivity of the parameter k in
KNN, we compared outlier detection performance
by KNN while changing the value of k. Figure
2 shows the average AUC by the KNN method in
three experimental setups. As shown in Figure 2,
in the unsupervised mode, stable performance was
observed in the range of 25 to 45, while in the semi-
supervised mode, high performance was obtained at
small k values.

3.7 Running Time Comparison of Outlier
Detection Methods

We measured the running time when perform-
ing the outlier detection method in unsupervised
mode of Section 3.3. The computer used had a
CPU Intel i9-9900X(3.50GHz), RAM 32GB. Fig-
ure 3(a) shows the measured CPU time in seconds
while running on bbc and 20-newsgroup data re-
spectively. The methods based on one-class SVM,
PCA, and feature bagging showed a relatively high
execution time compared to the other methods. Fig-
ure 3(b) shows the average AUC values by outlier

detection methods copied from Table 3, 4, 5.

4 Discussions

In this paper, a comparative study for outlier
detection methods in high dimensional data was
performed and experimental results using text data
were analyzed. In particular, experimental setups
were simulated to compare the performance of out-
lier detection methods in unsupervised versus semi-
supervised mode and uni-modal versus multi-modal
data distributions. Experimental results can be sum-
marized as follows:

– Outlier detection methods utilizing feature
transformation such as autoencoder, PCA, or
kurtosis-based dimension reduction achieved the
highest performance in the unsupervised mode
when normal data consisted of multiple classes.
However, in the semi-supervised mode where
the class label of normal data is given, outlier
detection methods such as KNN, LOF, or one-
class SVM were better than AE or PCA-based
methods.
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Figure 1. Comparison of the maximum and minimum distances from normal or outliers to other data
samples. top row: measured in semi-supervised mode, bottom row: unsupervised mode

of outliers and normal data samples with the care-
ful selection of the value k in k-NN search.

Next, to test the sensitivity of the parameter k in
KNN, we compared outlier detection performance
by KNN while changing the value of k. Figure
2 shows the average AUC by the KNN method in
three experimental setups. As shown in Figure 2,
in the unsupervised mode, stable performance was
observed in the range of 25 to 45, while in the semi-
supervised mode, high performance was obtained at
small k values.

3.7 Running Time Comparison of Outlier
Detection Methods

We measured the running time when perform-
ing the outlier detection method in unsupervised
mode of Section 3.3. The computer used had a
CPU Intel i9-9900X(3.50GHz), RAM 32GB. Fig-
ure 3(a) shows the measured CPU time in seconds
while running on bbc and 20-newsgroup data re-
spectively. The methods based on one-class SVM,
PCA, and feature bagging showed a relatively high
execution time compared to the other methods. Fig-
ure 3(b) shows the average AUC values by outlier

detection methods copied from Table 3, 4, 5.

4 Discussions

In this paper, a comparative study for outlier
detection methods in high dimensional data was
performed and experimental results using text data
were analyzed. In particular, experimental setups
were simulated to compare the performance of out-
lier detection methods in unsupervised versus semi-
supervised mode and uni-modal versus multi-modal
data distributions. Experimental results can be sum-
marized as follows:

– Outlier detection methods utilizing feature
transformation such as autoencoder, PCA, or
kurtosis-based dimension reduction achieved the
highest performance in the unsupervised mode
when normal data consisted of multiple classes.
However, in the semi-supervised mode where
the class label of normal data is given, outlier
detection methods such as KNN, LOF, or one-
class SVM were better than AE or PCA-based
methods.
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Figure 3. (a) Comparison of CPU time in seconds while running on bbc and 20-newsgroup data. (b)
Performance comparison of outlier detection methods in three experimental settings by the average AUC.

– In unsupervised mode, bagging by feature se-
lection using the base detector LOF achieved
higher performance than using the single detec-
tor LOF, but it did not show the best performance
among the compared methods. It is presumed to
be caused by the characteristic that text data has
many zero components.

– Outlier detection based on one-class SVM
showed significantly higher performance when
normal data consisted of one class. On the other
hand, on multi-class normal data, the perfor-
mance was lower than that of the KNN-based
method.

– A dimension reduction method was introduced
that maximizes kurtosis, which can be imple-
mented using a simple neural network with no
hidden layers. Experimental results have proven
that the performance of the Isolation Forest built
in a dimension reduced space is greatly im-
proved.

– Outlier detection based on distance to k near-
est neighbors worked well despite the curse of
dimensionality in high dimensional space. Es-
pecially, it was prominent in semi-supervised
mode where normal training data is given. The
feasibility of using k-NN distances for outlier
detection in high-dimensional data was experi-
mentally examined.

Experimental comparison has the limitation that
it requires optimization of parameter values for each
method and data set. However, parameter optimiza-
tion is not easy unless a validation set of outliers

is not provided. Instead, for all the data sets we
used default parameter values recommended in the
PyOD package with very little exceptional cases.
Regardless of that limitation, consistent findings
can provide insight into the application of outlier
detection methods in high dimensional text data.
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