Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents a critical mini-review of research conducted on bioelectrochemical reactors with emphasis placed on microbial fuel cells (MFC) and microbial electrolysis cells (MEC). The principle of operation and typical constructions of MFCs and MECs were presented. The types of anodes and cathodes, ion-selective membranes and microorganisms used were discussed along with their limitations.
Czasopismo
Rocznik
Tom
Strony
603--610
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
autor
- Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warszawa, Poland
Bibliografia
- 1. Franks A.E., Nevin K.P., 2010. Microbial fuel cells, a current review, Energies, 3, 889-919. DOI: 10.3390/en3050899.
- 2. Freguia S., Tsujimura S., Kano K., 2010. Electron transfer pathways in microbial oxygen biocathodes. Electrochimica Acta, 55, 813–818. DOI: 10.1016/j.electacta.2009.09.027.
- 3. Hamelers H.V.M., Ter Heijne A., Sleutels T.H.J.A., Jeremiasse A.W., Strik D.P.B.T.B., Buisman C.J.N., 2010. New applications and performance of bioelectrochemical systems. Appl. Microbiol. Biotechnol., 85, 1673–1685. DOI: 10.1007/s00253-009-2357-1.
- 4. Kim B.H., Kim H.J., Hyun M.S., Park D.H., 1999. Direct electrode re action of Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbial. Biotech., 9, 127-131.
- 5. Kim K.-Y., Chae K.-J., Choi M.-J., Ajayi F.F., Jang A., Kim C.-W., Kim I.S., 2011. Enhanced Coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes. Bioresour. Tech., 102, 4144-4149. DOI: 10.1016/j.biortech.2010.12.036.
- 6. Lefebvre O., Uzabiaga A., Chang I.S., Kim B., Ng H.Y., 2011. Microbial fuel cells for energy self-sufficientdomestic wastewater treatment – a review and discussion from energetic consideration. Appl. Microbiol. Biotechnol., 89, 259–270. DOI: 10.1007/s00253-010-2881-z.
- 7. P. Sobieszuk, A. Zamojska-Jaroszewicz, A. Kołtuniewicz, Chem. Process Eng., 2012, 33 (4), 603-610 Li C., Ding L., Cui H., Zhang L., Xu K., Ren H., 2012. Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour. Technol., 116, 459-465. DOI: 10.1016/j.biortech.2012.03.115.
- 8. Liang P., Wang H.Y., Xia X., Huang X., Mo Y. H., Cao X.X., Fan M. Z., 2011. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells. Biosens. Bioelectron., 26, 3000-3004. DOI: 10.1016/j.bios.2010.12.002.
- 9. Liu J., Qiao Y., Guo C.X., Lim S., Song H., Li C. M., 2012. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour. Technol., 114, 275-280, DOI: 10.1016/j.biortech.2012.02.116.
- 10. Logan B. E., Hamelers B., Rozendal R., Schröder U., Keller J., Freguia S., Aelterman P., Verstraete W., Rabaey K., 2006. Microbial fuel cells: methodology and technology. Environ. Sci. Technol., 40, 5181–5192. DOI: 10.1021/es0605016.
- 11. Logan B.E., 2010. Scaling up microbial fuel cells and other bioelectrochemical systems, Appl. Microbiol. Biotechnol., 85, 1665–1671. DOI: 10.1007/s00253-009-2378-9.
- 12. Lovley B.E., 2008. The microbe electric: conversion of organic matter to electricity. Current Opinion Biotechnol., 19, 564-571. DOI: 10.1016/j.copbio.2008.10.005.
- 13. Lowy D.A., Tender L.M., 2008. Harvesting energy from the marine sediment-water interface: III. Kinetics activity of quinone- and antimony-based anode materials. J. Power Sources, 185, 70-75. DOI: 10.1016/j.jpowsour.2008.06.079.
- 14. Nevin K.P., Woodard T.L., Franks A.E., Summers Z.M., Lovley D.R., 2010. Microbial electrosynthesis: Feedin microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio, 1, e00103-10. DOI: 10.1128/mBio.00103-10.
- 15. Rabaey K., Girguis P., Nielsen L.K., 2011. Metabolic and practical considerations on microbial electrosynthesis. Current Opinion in Biotechnol., 22, 371-377. DOI: 10.1016/j.copbio.2011.01.010.
- 16. Reimers C.E., Tender L.M., Ferting S., Wang W., 2001. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol., 35, 192-195. DOI: 10.1021/es001223s.
- 17. Rozendal R.A., Hamelers H.V.M., Buisman C.J.N., 2006. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol., 40, 5206–5211. DOI: 10.1021/es060387r.
- 18. Rozendal R.A., Jeremiasse A.W., Hamelers H.V.M., Buisman C.J.N., 2008. Hydrogen production with a microbial biocathode. Environ. Sci. Technol., 42, 629–634. DOI: 10.1021/es071720+.
- 19. Tang X., Guo K., Li H., Du Z., Tian J., 2011. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes. Bioresour. Technol., 102, 3558-3560. DOI: 10.1016/j.biortech.2010.09.022.
- 20. ter Heijne A., Hamelers H.V.M., Saakes M., Buisman C.J.N., 2008. Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochimica Acta, 53, 5697-5703. DOI:10.1016/j.electacta.2008.03.032.
- 21. Wang H-Y., Bernarda A., Huang C-Y., Li D-J., Chang J-S., 2011. Micro-sized microbial fuel cell: A mini review. Bioresour. Technol., 102, 235-243. DOI: 10.1016/j.biortech.2010.07.007.
- 22. Wang X., Cheng SA., Feng Y.J., Merrill M.D., Saito T., Logan B.E., 2009. Useof carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells. Environ. Sci. Technol., 43, 6870-6874. DOI: 10.1021/e900997w.
- 23. Wei J., Liang P., Huang X., 2011. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol., 102, 9335-9344. DOI: 10.1016/j.biortech.2011.07.019.
- 24. Yang Y., Sun G., Xu M., 2011. Microbial fuel cells come of age. J. Chem. Technol. Biotechnol., 86, 625–632. DOI: 10.1002/jctb.2570.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b038cbd-5d25-4600-989d-7af2cff90de6