Identyfikatory
Warianty tytułu
Analiza dekompozycyjna zużycia energii pierwotnej w Polsce w okresie transformacji gospodarczej
Języki publikacji
Abstrakty
Primary energy consumption depends on the size of the economy and its structure, including both industrial and service sectors, characterized by different energy demands. Some of the basic energy and economic indicators that can be used to analyze primary energy consumption include energy intensity, energy productivity and indicators measuring the activity of the economy (gross domestic product or gross value added). In the years 1995-2021, the Polish economy developed at a relatively constant pace, and the value of gross domestic product increased in real terms by almost 290% over the entire analyzed period. However, despite this increase, total primary energy consumption remained at the relatively constant level of around 3,800-4,600 PJ/year. This was caused by, among other factors, an increase in energy productivity on the one hand and a reduction in energy intensity on the other. It should be emphasized that a descriptive analysis of changes in primary energy consumption in Poland in the analyzed period, including changes in selected energy and economic indicators, does not allow the identification and quantification of the impact of all key factors on the total change of the examined value over time. In this context, the main aim of the research presented in this paper is to propose a decomposition model of primary energy consumption in Poland and adapt it to conduct analyses covering the period of economic and energy transition to quantitatively determine the impact of the identified factors on the total change in primary energy consumption in the 1995-2021 period. To perform the described research, decomposition analysis was applied, including a multiplicative and additive approach. A decomposition model was developed based on the formulated decomposition identity. Mathematical formulas of two methods were used to perform the calculations: a generalized Fisher index and the logarithmic mean Divisia index (LMDI). The obtained results indicate that the effects of demand and energy intensity factors had the most significant impact on the primary energy consumption change.
Zużycie energii pierwotnej w danym kraju jest związane z wielkością gospodarki oraz jej strukturą, obejmującą zarówno sektory przemysłowe, jak i usługowe, które charakteryzują się inną intensywnością użytkowania energii. Jednymi z podstawowych wskaźników, które mogą być wykorzystane do analizy zużycia energii pierwotnej, są m.in. wskaźnik energochłonności, produktywności oraz produkt krajowy brutto. W latach 1995-2021 gospodarka Polski rozwijała się w stosunkowo stałym tempie, a wartość produktu krajowego brutto wzrosła realnie o prawie 290% w całym okresie. Jednak pomimo tego wzrostu całkowite zużycie energii pierwotnej pozostawało na względnie stałym poziomie około 3800-4600 PJ/rok. Należy jednak podkreślić, że opisowa analiza zmian zużycia energii pierwotnej w Polsce, uwzględniająca zmiany wybranych wskaźników nie pozwala na identyfikację i ilościowe oszacowanie wpływu wszystkich kluczowych czynników na zmianę badanej wielkości w czasie. W związku z tym głównym celem badań jest zaproponowanie modelu dekompozycji zużycia energii pierwotnej w Polsce i zastosowanie go do przeprowadzenia analiz obejmujących okres transformacji gospodarczej i energetycznej, w celu ilościowego określenia wpływu zidentyfikowanych czynników na zmianę zużycia energii pierwotnej w latach 1995-2021. W celu realizacji opisanych badań wykorzystano analizę dekompozycyjną. Opracowano model dekompozycyjny, bazujący na sformułowanej tożsamości dekompozycyjnej. W celu wykonania obliczeń zastosowano formuły matematyczne dwóch metod: uogólnionej metody indeksu Fishera oraz logarytmicznej średniej indeksu Divisia. Uzyskane wyniki wskazują, że największy wpływ na zmianę zużycia energii pierwotnej w badanym okresie miały dwa efekty, tj. popytowy oraz energochłonności.
Wydawca
Czasopismo
Rocznik
Tom
Strony
67--84
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
Bibliografia
- [1] Ang 1994 – Ang, B.W. 1994. Decomposition of industrial energy consumption: The energy intensity approach. Energy Economics 16(3), pp. 163-174, DOI: 10.1016/0140-9883(94)90030-2.
- [2] Ang 1995 – Ang, B.W. 1995. Decomposition methodology in industrial energy demand analysis. Energy 20(11), 1081-1095, DOI: 10.1016/0360-5442(95)00068-R.
- [3] Ang 2004 – Ang, B.W. 2004. Decomposition analysis for policymaking in energy: which is the preferred method? Energy Policy 32(9), pp. 1131-1139, DOI: 10.1016/S0301-4215(03)00076-4.
- [4] Ang 2005 – Ang, B.W. 2005. The LMDI approach to decomposition analysis: a practical guide. Energy Policy 33(7), pp. 867-871, DOI: 10.1016/j.enpol.2003.10.010.
- [5] Ang 2015 – Ang, B.W. 2015. LMDI decomposition approach: A guide for implementation. Energy Policy 86, pp. 233-238, DOI: 10.1016/j.enpol.2015.07.007.
- [6] Ang, B.W. and Liu, Na, 2007. Energy decomposition analysis: IEA model versus other methods. Energy Policy 35(3), pp. 1426-1432, DOI: 10.1016/j.enpol.2006.04.020.
- [7] Ang, B.W. and Zhang, F. 2000. A survey of index decomposition analysis in energy and environmental studies. Energy 25(12), pp. 1149-1176, DOI: 10.1016/S0360-5442(00)00039-6.
- [8] Ang et al. 2003 – Ang, B.W., Liu, F.L. and Chew, E.P. 2003. Perfect decomposition techniques in energy and environmental analysis. Energy Policy 31(14), pp. 1561-1566, DOI: 10.1016/S0301-4215(02)00206-9.
- [9] Ang et al. 2004 – Ang, B.W., Liu, F.L. and Chung, Hyun-Sik, 2004. A generalized Fisher index approach to energy decomposition analysis. Energy Economics 26(5), pp. 757-763, DOI: 10.1016/j.eneco.2004.02.002.
- [10] Azami, S. and Hajilooei, M.M. 2022. How does the decomposition approach explain changes in Iran’s energy consumption? What are the driving factors? Cleaner and Responsible Consumption 4, DOI: 10.1016/j.clrc.2022.100054.
- [11] Boyd, G.A. and Roop, J.M. 2004. A note on the Fisher ideal index decomposition for structural change in energy intensity. The Energy Journal 25(1), pp. 87-101, DOI: 10.2307/41323022.
- [12] Energy Statistics in years 1995-2021, Statistics Poland, Warsaw, 1996-2022 (in Polish).
- [13] Eurostat database. [Online] https://ec.europa.eu/eurostat/data/database [Accessed: 2023-09-05].
- [14] Gołaś, Z. 2022. Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019. Energies 15(12), DOI: 10.3390/en15124264.
- [15] Grunewald et al. 2014 –Grunewald, N., Jakob, M. and Mouratiadou, I. 2014. Decomposing inequality in CO2 emissions: The role of primary energy carriers and economic sectors. Ecological Economics 100, pp. 183-194, DOI: 10.1016/j.ecolecon.2014.02.007.
- [16] Huntington, H.G. 2010. Structural change and U.S. energy use: recent patterns. The Energy Journal 31(3), pp. 25-40.
- [17] Iskrzycki et al. 2011 – Iskrzycki, K., Suwała, W. and Kaszyński, P. 2011. Decomposition of sulphur dioxide emissions reduction in Polish power plants, 1995-2008 (Dekompozycja redukcji emisji dwutlenku siarki w polskich elektrowniach, 1995-2008). Polityka Energetyczna - Energy Policy Journal 14(2), pp. 107-125 (in Polish).
- [18] Kamiński, J. 2019. Domestic hard coal supplies to the energy sector: the impact of global coal prices. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35(1), pp. 141-164, DOI: 10.24425/gsm.2019.128204.
- [19] Kaszyński, P. and Kamiński, J. 2020. Coal Demand and Environmental Regulations: A Case Study of the Polish Power Sector. Energies 13(6), DOI: 10.3390/en13061521.
- [20] Kaszyński et al. 2019 – Kaszyński, P., Komorowska, A. and Kamiński, J. 2019. Regional distribution of hard coal consumption in the power sector under selected forecasts of EUA prices. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 35, pp. 113-134, DOI: 10.24425/gsm.2019.128538.
- [21] Kaszyński et al. 2020 – Kaszyński, P., Komorowska, A. and Malec, M. 2020. Competitiveness of the Polish hard coal mining sector as a fuel supplier for heat and power generation. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 36(4), pp. 5-32, DOI: 10.24425/gsm.2020.133941.
- [22] Komorowska et al. 2020 – Komorowska, A., Benalcazar, P., Kaszyński, P. and Kamiński, J. 2020. Economic consequences of a capacity market implementation: The case of Poland. Energy Policy 144, DOI: 10.1016/j.enpol.2020.111683.
- [23] Komorowska et al. 2023 – Komorowska, A., Kaszyński, P. and Kamiński, J. 2023. Where does the capacity market money go? Lessons learned from Poland. Energy Policy 173, DOI: 10.1016/j.enpol.2023.113419.
- [24] Komorowska, A. 2023. The impact of long-term contracts of the capacity market on the consumption of steam coal in the power system. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(2), pp. 165-176, DOI: 10.24425/gsm.2023.
- [25] Liu, F.L. and Ang, B.W. 2003. Eight methods for decomposing the aggregate energy-intensity of industry. Applied Energy 76(1-3), pp. 15-23, DOI: 10.1016/S0306-2619(03)00043-6.
- [26] Malec, M. 2023. The prospects for decarbonisation in the context of reported resources and energy policy goals: The case of Poland. Energy Policy 161, DOI: 10.1016/j.enpol.2021.112763.
- [27] Metcalf, G.E. 2008. An empirical analysis of energy intensity and its determinants at the state level. The Energy Journal 29(3), pp. 1-26.
- [28] Raza, M.Y. and Lin, B. 2023. Development trend of Pakistan’s natural gas consumption: A sectorial decomposition analysis. Energy 278(A), DOI: 10.1016/j.energy.2023.127872.
- [29] Reuter et al. 2019 – Reuter, M., Patel, M.K. and Eichhammer, W. 2019. Applying ex post index decomposition analysis to final energy consumption for evaluating European energy efficiency policies and targets. Energy Efficiency 12, pp. 1329-1357, DOI: 10.1007/s12053-018-09772-w.
- [30] Román-Collado, R. and Colinet, M.J. 2018. Is energy efficiency a driver or an inhibitor of energy consumption changes in Spain? Two decomposition approaches. Energy Policy 115, pp. 409-417, DOI: 10.1016/j.enpol.2018.01.026.
- [31] Ščasný et al. 2021 – Ščasný, M., Ang, B.W. and Rečka, L. 2021. Decomposition analysis of air pollutants during the transition and post-transition periods in the Czech Republic. Renewable and Sustainable Energy Reviews 145, DOI: 10.1016/j.rser.2021.111137.
- [32] Stachura, P. 2017. Structural decomposition analysis applied to the energy use in Poland. Economic and Environmental Studies 18(2)(46/2018), pp. 859-877, DOI: 10.25167/ees.2018.46.24.
- [33] Stachura, P. 2018. ODEX energy efficiency index decomposition analysis for Poland from 2000 to 2014. Research papers of Wrocław University of Economics 491/2017, pp. 340-351, DOI: 10.15611/pn.2017.491.32.
- [34] Statistical Yearbook of the Republic of Poland 1996-2022. Statistics Poland, Warsaw, 1996-2022.
- [35] Sun, J.W. 1998. Changes in energy consumption and energy intensity: A complete decomposition model. Energy Economics 20(1), pp. 85-100, DOI: 10.1016/S0140-9883(97)00012-1.
- [36] Wang, Q. and Liu, Y. 2021. India’s renewable energy: New insights from multi-regional input output and structural decomposition analysis. Journal of Cleaner Production 283, DOI: 10.1016/j.jclepro.2020.124230.
- [37] Wang, Q. and Yang, X. 2020. German’s oil footprint: An input-output and structural decomposition analysis. Journal of Cleaner Production 242, DOI: 10.1016/j.jclepro.2019.118246.
- [38] Weiss de Abreu at al. 2021 – Weiss de Abreu, M., Ferreira, D.V., Pereira, A.O., Cabral, J. and Cohen, C. 2021. Household energy consumption behaviors in developing countries: A structural decomposition analysis for Brazil. Energy for Sustainable Development 62, pp. 1-15, DOI: 10.1016/j.esd.2021.03.001.
- [39] Zych et al. 2023 – Zych, G., Bronicki, J., Czarnecka, M., Kinelski, G. and Kamiński, J. 2023. The Cost of Using Gas as a Transition Fuel in the Transition to Low-Carbon Energy: The Case Study of Poland and Selected European Countries. Energies 16(2), DOI: 10.3390/en16020994.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b02f006-b7d2-4487-b0c2-ac16cb7f68c0