PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of frother type and dose on collectorless flotation of copper-bearing shale in a flotation column

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the influence of nonionic (methyl isobutyl carbinol, tri(ethylene glycol) monobutyl ether) and cationic (hexylamine) frothers on flotation of copper-bearing shale in a flotation column was investigated. It was shown that naturally hydrophobic shale did not float in pure water but it floated in the presence of the investigated frothers. The real contact angle of shale, measured by the sessile drop method, was equal to about 40°, while its effective contact angle was zero when shale was floated in a flotation column in pure water. The investigated surfactants increased the effective hydrophobicity of shale from zero to 16±1, 22±1 and 33±2° for coarse, medium and fine particles, respectively. The calculations of the effective contact angle were based on a simplified probabilistic model of flotation.
Słowa kluczowe
Rocznik
Strony
547--558
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Wroclaw University of Technology, Division of Mineral Processing, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
autor
  • Wroclaw University of Technology, Division of Mineral Processing, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw,
autor
  • Wroclaw University of Technology, Division of Mineral Processing, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw
Bibliografia
  • Bednarek, P., Kowalczuk, P.B., 2014, Kąt zwilżania łupka miedzionośnego w obecności wybranych spieniaczy, w: Łupek miedzionośny, Drzymała J., Kowalczuk P.B. (red.), WGGG PWr, Wrocław, 51–55 (in Polish, doi:10.5277/lupek1410).
  • Chipfunhu, D., Zanin, M., Grano, S., 2010, The dependency of the critical contact angle for flotation on particle size–Modelling the limits of fine particle flotation, Miner. Eng., 24(1), 50–57.
  • Cho, Y.S., Laskowski, J.S., 2002, Effect of flotation frothers on bubble size and foam stability, Int. J. Miner. Process. 64, 69–80.
  • Drzymala, J., 1994, Characterization of materials by Hallimond tube flotation. Part 2: maximum size of floating particles and contact angle, Int. J. Miner. Process., 42, 153–167 (erratum, 1995. Int. J. Miner. Process. 43, 135).
  • Drzymala, J., Bigosinski, J., 1995, Collectorless flotation of sulfides occurring in the Fore-sudetic copper minerals deposit of SW Poland, Mineralogia Polonica, 26(1), 63–73.
  • Drzymala J., Milczarski E., Milczarski J., 2007, Adsorption and flotation of hydrophilic and hydrophobic materials in the presence of hydrocarbon polyethylene glycol ethers, Colloid Surf. A: Physicochem. Eng. Asp., 308(1-3), 111–117.
  • Farrokhpay, S., 2011, The significance of froth stability in mineral flotation – A review, Adv. Colloid Interface Sci., 166, 1–7.
  • Ghigi, G., 1968, Flotation of quartz with some polymer complex collectors, Trans. IMM (London), 78, C212–C219.
  • Heyes, G.W., Trahar, W.J., 1976, The natural floatability of chalcopyrite, Int. J. Miner. Process., 4, 317–344.
  • Jameson, G.J., 2012, The effect of surface liberation and particle size on flotation rate constants, Miner. Eng., 36–38, 132–137.
  • Kosior, D., Zawala, J., Malysa, K., 2011, When and how α-terpineol and n-octanol can inhibit the bubble attachment to hydrophobic surfaces, Physicochem. Probl. Miner. Process., 47, 169–182.
  • Kowalczuk, P.B., Drzymala, J., 2011, Contact angle of bubble with an immersed-in-water particle of different materials, Ind. Eng. Chem. Res. 50(7), 4207–4211.
  • Kowalczuk, P.B., Sahbaz, O., Drzymala, J., 2011, Maximum size of floating particles in different flotation cells, Miner. Eng. 24(8), 766–771.
  • Kowalczuk, P.B., Buluc, B., Sahbaz, O., Drzymala, J., 2014, In search of an efficient frother for pre-flotation of carbonaceous shale from the Kupferschiefer stratiform copper ore, Physicochem. Probl. Miner. Process. 50(2), 835–840.
  • Laskowski, J S., 2001, Coal flotation and fine coal utilization, in Developments in mineral processing, Vol. 14, Elsevier Science Publishing, Amsterdam.
  • Malysa, E., Malysa, K., Czarnecki, J., 1987, A method of comparison of the frothing and collecting properties of frothers, Colloids and Surfaces, 23, 29–39.
  • Muganda, S., Zanin, M., Grano, S.R., 2011, Influence of particle size and contact angle on the flotation of chalcopyrite in a laboratory batch flotation cell, Int. J. Miner. Process., 98, 150–162.
  • Nguyen, A.V., Schulze, H.J., 2004, Colloid science of flotation, Marcel Dekker Inc., New York.
  • Peng, M., Ratajczak, T., Drzymala, J., 2014, Zeta potential of Polish copper-bearing shale in the absence and presence of flotation frothers, Mining Science, 21, 57–63.
  • Pugh, R.J., 2000, Non-ionic polyethylene oxide frothers in graphite flotation, Miner. Eng., 13(2), 161–162.
  • Saleh, A M., Iskra, J., 1996, Effect of molecular weight of polyethylene glycol frothers in their performance in low rank coal flotation, Physicochem. Probl. .Miner. Process., 30, 33–40.
  • Scheludko, A., Toshev, B.V., Bojadjiev, D.T., 1976, Attachment of particles to a liquid surface (capillary theory of flotation), J. Chem. Soc., Faraday Trans. 1, 72, 2815–2828.
  • Schulze, H.J., 1977, New theoretical and experimental investigations on stability of bubble/particle aggregates in flotation: A theory on the upper particle size of floatability, Int. J. Miner. Process., 4 (3), 241–259.
  • Trochanowska, J., Kowalczuk, P.B., 2014, Punkt zerowego ładunku elektrycznego powierzchni łupka miedzionośnego w roztworze wodnym, w: Łupek miedzionośny, Drzymała J., Kowalczuk P.B. (red.), WGGG PWr, Wrocław, 61–64 (in Polish, doi:10.5277/lupek1412).
  • Varbanov, R., Forssberg, E., Hallin, M., 1993, On the modelling of the flotation process, Int. J. Miner. Process., 37, 27–43.
  • Watanabe, M., Kowalczuk, P.B., Drzymala, J., 2011, Analytical solution of equation relating maximum size of floating particle and its hydrophobicity, Physicochem. Probl. Miner. Process. 46, 13–20.
  • Wills, B.A., Napier-Munn, T., 2006, Mineral processing technology. An introduction to the practical aspects of ore treatment and mineral recovery, 7th ed., Elsevier Science & Technology Books, ISBN: 0750644508.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0b00c3bd-e606-4d12-9a9a-e301e3f58b1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.