PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of regeneration process parameters on geometry and defects of clearance surface of planer knives used in wood planing process

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A properly implemented strategy regarding the planer knife regeneration process, may not only restore the original cutting ability of the tool, but even increase its operational quality, including its durability for industrial woodworking processes. This article presents experimental results and discussion in respect of sharpening planer knives with cubic boron nitride grinding wheels. Both the grinding conditions and machining surface quality were analyzed. Application of improper size or loads of abrasive grains may lead to the appearance of grinding burns on a machined surface, or result in a surface with cracks and grooves. The results of the measurements carried out indicate that surfaces with reduced values of roughness and waviness parameters can be obtained, even up to 22% (as in the case of the reduced peak height parameter, Spk) in relation to new knives, prepared at a factory. The value of St and Sds parameters are almost the same as reference knife (deviation up to 3%). Due to machining marks, the total waviness exceeds 33%. Our research also shows that due to the technological quality of the knife surfaces, it is beneficial to use CBN grains with a low depth of cut (ae no more than 0.02 mm), but a moderate or high feed rate (the best choice is about 470 mm/min for vft). Presented results constitute an important know-how for the grinding process with the use of grinders used by operators (like WEINIG Rondamat 980) during the sharpening of planer cutter heads in the wood industry.
Rocznik
Strony
art. no. e43, 2022
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
Bibliografia
  • 1. Knight WA, Boothroyd G. Fundamentals of metal machining and machine tools. Boca Raton: Taylor and Francis; 2006. (ISBN 9781574446593).
  • 2. Cui X, Zhao J, Tian X. Cutting forces, chip formation, and tool wear in high-speed face milling of AISI H13 steel with CBN tools. Int J Adv Manuf Technol. 2013;64:1737–49. https://doi.org/10.1007/s00170-012-4137-9.
  • 3. Cui X, Zhao J, Dong Y. The effects of cutting parameters on tool life and wear mechanisms of CBN tool in high-speed face milling of hardened steel. Int J Adv Manuf Technol. 2013;66:955–64. https://doi.org/10.1007/s00170-012-4380-0.
  • 4. Denkena B, Ortmaier T, Ahrens M, et al. Monitoring of grinding wheel defects using recursive estimation. Int J Adv Manuf Technol. 2014;75:1005–15. https:// doi. org/ 10. 1007/s00170-014-6170-3.
  • 5. Oraby SE, Hayhurst DR. Tool life determination based on the measurement of wear and tool force ratio variation. Int J Mach Tools Manuf. 2004;44(12–13):1261–9. https://doi.org/10.1016/j.ijmachtools.2004.04.018.
  • 6. Astakhov VP. Effects of the cutting feed, depth of cut, and work-piece (bore) diameter on the tool wear rate. Int J Adv Manuf Technol. 2007;34:631–40. https://doi.org/10.1007/s00170-006-0635-y.
  • 7. Sutowski P, Plichta S. An investigation of the grinding wheel wear with the use of root-mean-square value of acoustic emission. Arch Civ Mech Eng. 2006;6(1):87–98. https://doi.org/10.1016/S1644-9665(12)60078-8.
  • 8. Stein JL, Huh K. Monitoring cutting forces in turning: a model-based approach. ASME J Manuf Sci Eng. 2000;124(1):26–31. https://doi.org/10.1115/1.1432666.
  • 9. Kumar MK, Ghosh A. On grinding force ratio, specific energy, G-ratio and residual stress in SQCL assisted grinding using aerosol of MWCNT nanofluid. Mach Sci Technol. 2021;25(4):585–607. https://doi.org/10.1080/10910344.2021.1903920.
  • 10. Nadolny K, Kapłonek W, Sutowska M, et al. Moving towards sustainable manufacturing by extending the tool life of the pine wood planing process using the AlCrBN coating. Sustain Mater Technol. 2021;28: e00259. https://doi.org/10.1016/j.susmat.2021.e00259.
  • 11. Nadolny K, Sienicki W, Wojtewicz M. The effect upon the grinding wheel active surface condition when impregnating with non-metallic elements during internal cylindrical grinding of titanium. Arch Civ Mech Eng. 2015;15:71–86. https://doi.org/10.1016/j.acme.2014.03.004.
  • 12. Yağmur S. The effects of cooling applications on tool life, surface quality, cutting forces, and cutting zone temperature in turning of Ni-based Inconel 625. Int J Adv Manuf Technol. 2021;116:821–33. https://doi.org/10.1007/s00170-021-07489-2.
  • 13. Nadolny K, Wojtewicz M, Sienicki W, et al. An analysis of centrifugal MQL supply system potential in the internal cylindrical grinding process. Arch Civ Mech Eng. 2015;15:639–49. https://doi.org/10.1016/j.acme.2014.08.009.
  • 14. Nadolny K, Kapłonek W, Sutowska M, et al. Experimental studies on durability of PVD-based CrCN/CrN-coated cutting blade of planer knives used in the pine wood planing process. Materials. 2020;13(10):2398. https://doi.org/10.3390/ma13102398.
  • 15. Nadolny K, Kapłonek W, Sutowska M, et al. Experimental tests of PVD AlCrN-coated planer knives on planing Scots pine (Pinus sylvestris L.) under industrial conditions. Eur J Wood Wood Prod. 2021;79:645–65. https://doi.org/10.1007/s00107-021-01660-y.
  • 16. Gilewicz A, Goluch B, Kukliński Z, Warcholiński B. Selected mechanical properties of AlCrN coatings deposited using cathodic arc evaporation method (in Polish). Mechanik. 2016;5–6:538–9.https://doi.org/10.17814/mechanik.2016.5-6.75.
  • 17. Gilewicz A, Kuznetsova T, Aizikovich S, et al. Comparative investigations of AlCrN coatings formed by cathodic arc evaporation under different nitrogen pressure or arc current. Materials. 2021;14(2):304. https://doi.org/10.3390/ma14020304.
  • 18. Gochev Z, Vichev P. Determination of performance indicators of PCD abrasive wheels for sharpening tungsten carbide wood cutting tools. ACTA Fac Xylologiae Zvolen. 2020;62(2):109–14. https://doi.org/10.17423/afx.2020.62.2.10.
  • 19. Gochev Z, Vichev P, Vukov G (2019) Determination of performance index and effective power for sharpening of TC planer knives with PCD abrasive wheels. In: ICWST 2019, implementation of wood science in woodworking sector and 70th anniversary of Drvna industrija Journal, Zagreb, pp 53–60 (ISBN 978-953-292-06-8).
  • 20. Gochev Z, Vichev P, Vukov G (2019) Determination of performance indicators and quality of TCT knives when sharpened with PCD grinding wheels. In: Wood technology & product design. Ss. Cyril and Methodius University, Skopje, pp 119–126 (ISBN:978-608-4723-03-5).
  • 21. Gochev Z (2008) Investigation on the grinding quality of planing knives made of high-speed steel (HSS) type M2 and specific consumption of cubic boron nitride (CBN). In: Chip and chipless woodworking processes. Technical University in Zvolen, Zvolen, 89–97 (ISBN: 978-80-228-1913-8).
  • 22. Nadolny K, Kapłonek W. SEM-based morphological analysis of the new generation AION-based abrasive grains (Abral) with reference to Al 2 O 3 /SiC/cBN abrasives. Acta Microsc. 2015;24(1):64–78.
  • 23. O’Connor RF, Tomlinson WJ, Blunt LA. Effect of waviness on the wear behaviour of 080 M40 (EN8) and 817 M40 (EN24A)steels. Tribol Int. 1991;24(5):259–68. https://doi.org/10.1016/0301-679X(91)90028-8.
  • 24. Cz Ł. Identification of machining marks on abrasive treated surfaces, using image processing techniques. Mechanik. 2018;91(11):1020–2. https://doi.org/10.17814/mechanik.2018.11.181.
  • 25. Giovannini M, Moser N, Ehmann K (2015) Experimental and analytical study of micro-serrations on surgical blades. In: Conference: ASME 2015 international technical conference and exhibition on packaging and integration of electronic and photonic microsystems collocated with the ASME 2015, 13th International conference on nanochannels, microchannels and minichannels. V003T03A004. https://doi.org/10.1115/IPACK2015-48046.
  • 26. Menezes PL, Kailas SV. Role of surface texture and roughness parameters on friction and transfer film formation when UHM-WPE sliding against steel. Biosurf Biotribol. 2016;2(1):1–10.https://doi.org/10.1016/j.bsbt.2016.02.001.
  • 27. Lebedev V, Klimenko N, Uryadnikova I et al (2017) Martensite transformations in the surface layer at grinding of parts of hardened steels. East Eur J Enterp Technol 3(12(87)):56–63. https://doi.org/10.15587/1729-4061.2017.103149.
  • 28. Dzionk S, Przybylski W. Surface waviness of components machined by burnishing method. Arch Mech Technol Autom. 2012;32(3):25–33.
  • 29. Bulmer MG. Principles of statistics. New York: Dover Publications Inc; 1979. (ISBN 978-0486637600).
  • 30. Menezes PL, Kishore KSV. Influence of roughness parameters on coefficient of friction under lubricated conditions. Sadhana. 2008;33(3):181–90. https://doi.org/10.1007/s12046-008-0011-8.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0afebb3a-1bff-4794-9606-0a4d6650ec6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.