PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Blades interaction and non-stationarity of flow in vertical-axial wind turbines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Until recently, horizontal-axial wind turbines with blades having a wing profile occupied a predominant position in the world wind energy market. But currently, vertical-axial wind units are of increasing interest and this is understandable from the point of view of their important features as: no requirements for the orientation of the wind turbine to the wind, the possibility of placing electrical and other equipment on the ground, no requirements for changes of blade chord installation angle along its length. The article discusses the aerodynamics of the vertical-axis wind turbines: the range of changes of angles of incoming flow attack on the blade, the dynamics of changes in the magnitude of the absolute speed of flow of the blade on a circular trajectory of its movement depending on the turbine rapidity, and also obtained in experiments interaction effect of the blades in the rotor. The experiments were carried out on wind turbines with original blades (basic version), which were designed to eliminate the shortcomings of low-speed rotors Savonius (low coefficient of use of wind energy) and high-speed rotors Darrieus (lack of self-start).
Wydawca
Rocznik
Tom
Strony
280--286
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Sumy National Agrarian University Faculty of Food Technologies 160 H. Kondratieva st., 40000 Sumy, Ukraine
  • Technical University of Kosice Faculty of Manufacturing Technologies Sturova 31, 08001 Presov, Slovakia
  • Sumy State University Faculty of Electronics and Information Technologies 2, Rymskogo-Korsakova st., 40007 Sumy, Ukraine
  • Sumy State University Faculty of Electronics and Information Technologies 2, Rymskogo-Korsakova st., 40007 Sumy, Ukraine
Bibliografia
  • [1] D.J. De Renzo. Vetroenergetika [Wind energy]. Moscow, 272 p., 1982.
  • [2] J.W. Twidell and A.D. Weir. Renewable Energy Resources. London, E. & F.N. Spon, 392 p., 1986.
  • [3] V.A. Dzendzerskiy, S. Tarasov and I. Kostyukov. Vetroustanovki maloi moshchnosti [Low power wind turbines]. Kiev, 591 p., 2011. (in Russian)
  • [4] D.N. Gorelov. Aerodinamika vetrokolyos s vertikalnoi osyu vrashcheniya [Aerodynamics of wind turbine with vertical axis of rotation]. Omsk, 68 p., 2012. (in Russian)
  • [5] D.N. Gorelov. “Eksperimentalnoe issledovanie energeticheskikh kharakteristik dvukhyarusnogo rotora Savoniusa” [Experimental study of energy characteristics of Savonius twin-tier rotor]”. Teplofizika i aeromekhanika, 2005, vol. 12, no. 4, pp. 693-696. (in Russian)
  • [6] D.N. Gorelov. “Problemy aerodinamiki vetrokolesa Dar’e [Problems of Darrieus wind turbine aerodynamics]”. Teplofizika i aeromekhanika, 2005, vol. 10, no. 1, pp. 47-51. (in Russian)
  • [7] D.N. Gorelov and Yu.N. Kuzmenko. “Eksperimentalnaya otsenka predelnoi moshchnosti vetrokolesa s vertikalnoi osyu vrashcheniya [Experimental estimation of the maximum power of a wind turbine with a vertical axis of rotation]”. Teplofizika i aeromekhanika, 2001, vol. 8, no. 2, pp. 329-331. (in Russian)
  • [8] D.N. Gorelov, V.V. V’yugov and V.P. Krivospitskii. “Eksperimental’noe issledovanie dvukhyarusnogo rotora Dar’e [Experimental study of Darrieus twin-tier rotor]”. Teplofizika i aeromekhanika, 2005, vol. 10, no. 2, pp. 243-248. (in Russian)
  • [9] D.N. Gorelov and V.P. Krivospitskii. “Perspektivy razvitiya vetroenergeticheskikh ustanovok s ortogonal’nym rotorom [Prospects for development of wind power units with orthogonal rotor]”. Teplofizika i aeromekhanika, 2008, vol. 15, no. 1, pp. 163-167. (in Russian)
  • [10] D.N. Gorelov. “Energeticheskie kharakteristiki rotora Dar’e [Energy characteristics of Darrieusrotor (overview)]”. Teplofizika i aeromekhanika, 2010, vol. 17, no. 3, pp. 325-333. (in Russian)
  • [11] I.I. Ivanov, G.A. Ivanova, O.L. Perfilov. “Model’nye issledovaniya rotornykh rabochikh kolyos vetroenergeticheskikh stantsyi [Model studies of rotor impellers of wind power stations]”. Sbornik trudov Gidroproekta “Vetroenergeticheskie stantsii”, Moscow [Proc. of the Gidroproekt “Wind energy stations”, Moscow], 1988, no. 129, pp. 106-113. (in Russian)
  • [12] V.P. Kharitonov. Avtonomnye vetroelektricheskie ustanovki [Autonomous wind electric power stations]. Moscow, 2006, 280 p. (in Russian)
  • [13] P.G. Baklushin, V.V. Samsonov, K.P. Vashkevich. “Eksperimental’nye issledovaniya aerodinamicheskikh kharakteristik ortogonal’nykh kryl’chatukh vetrokolyos [Experimental research of aerodynamics characteristics of orthogonal blade wind turbines]” Sbornik trudov Gidroproekta “Vetroenergeticheskie stantsii”, Moskva [Proc. of the Gidroproekt “Wind energy stations”, Moscow], 1988, no. 129, pp. 98- 105. (in Russian)
  • [14] A.M. Fedyushkin and O.V. Levinskikh. “Experimental research of the wind turbine with a vertical axis of rotation” Tematicheskii sbornik nauchnykh trudov KhAI im. Zhukovskogo N.E. “Konstruktsiya i okhlazhdenie elektricheskikh mashin bezodkhodnoi tekhnologii”, Kharkov [Thematic proc. Of KhAI named Zhukovsky N.E. "Design and cooling of electric machines of waste-free technology", Kharkov], 1986, pp. 160-166. (in Russian)
  • [15] A.N. Razdobarin. “Raschyot vozdeistviya nestatsionarnykh poryvov na obtekanie profilya [Calculation of influence of non-stationary impulses on profile flow]”. Trudy Tsentral’nogo aerodinamicheskogo instituta imeni N.E. Zhukovskogo [Proc of Central aero-hydrodynamics institute named N.E. Zhukovskii], 1996, no. 2622, pp. 3-14. (in Russian)
  • [16] V.M. Kovalenko and L.G. Rozhkova. “Vertikal’no-osovi vetroustanovky serednyoi bystrokhodnosti [Vertical-axial wind stations with average rapidity]” Zbirka prats’ II Ukrajins’koji naukovo-tekhnichnoji konferentsiji “gidromekhanika v inzhenernii praktytsi” [Proc. Ukrainian Scientific and Technical Conference “Hydromechanical in Engineering Practice”]. Kyiv-Cherkassy, 1997, pp. 202-204. (in Ukrainian)
  • [17] L.G. Rozhkova. Novi formy profiliv lopatei vertykalno-osovykh vitroustanovok serednyoji shvydkokhidnosti. [New forms of profiles of blades vertical-axial wind stations with average rapidity]. Dissertation. Sumy, 2005, 160 р. (in Ukrainian)
  • [18] V.M. Kovalenko, et al. Vetrokoleso [Wind turbine]. Patent USSR, no. 176549368, 1992. (in Russian)
  • [19] L.G. Rozhkova. Lopast’ vetrokolesa [Blade of wind turbine]. Patent USSR, no. 1815409, 1993. (in Russian)
  • [20] L.G. Rozhkova and E.G. Kuznetsov. Vitrokoleso vertykalnoossyovoji vitroustanovky z lopatyamy typu KN [Wind turbine of vertical-axial wind station with blades of KN type]. Patent Ukraine, no. 124107, 2018. (in Ukrainian)
  • [21] A. Panda, Š. Olejárová, J. Valíček and M. Harničárová. "Monitoring of the condition of turning machine bearing housing through vibrations". International Journal of Advanced Manufacturing Technology, vol. 97, no. 1-4, pp. 401-411, 2018.
  • [22] M. Rimar, M. Fedak, A. Kulikov and P. Smeringai. "Study of gaseous flows in closed area with forced ventilation". MM Science Journal, vol. 2018, no. March, pp. 2188-2191, 2018.
  • [23] A. Panda, V. Nahornyi, I. Pandová, M. Harničárová, M. Kušnerová, J. Valíček and J. Kmec. "Development of the method for predicting the resource of mechanical systems". International Journal of Advanced Manufacturing Technology, vol. 105, no. 1-4, pp. 1563-1571, 2019.
  • [24] S. Olejarova, J. Dobransky, J. Svetlik and M. Pituk. "Measurements and evaluation of measurements of vibrations in steel milling process". Measurement, vol. 106, pp. 18-25, 2017. ISSN 0263-2241.
  • [25] J. Valicek, M. Harnicarova, I. Kopal, Z. Palková, M. Kušnerová, A. Panda and V. Šepelák. "Identification of Upper and Lower Level Yield strength in Materials". Materials, vol. 10, no. 9, pp. 1-20, 2017.
  • [26] A. Panda and J. Duplak. "Comparison of theory and practice in analytical expression of cutting tools durability for potential use at manufacturing of bearings". Applied Mechanics and Materials, vol. 616, pp. 300-307, 2014.
  • [27] A. Panda, K. Dyadyura, J. Valicek, M. Harnicarova, J. Zajac, V. Modrak, I. Pandova, P. Vrabel, E. Novakova-Marcincinova and Z. Pavelek. "Manufacturing Technology of Composite Materials – Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene". Materials, vol. 10, no. 4, pp. 337, 2017.
  • [28] A.S. Chaus, et al. “Complex fine-scale diffusion coating formed at low temperature on high-speed steel substrate”. Applied Surface Science, vol. 437, pp. 257-270, 2018.
  • [29] W. Bialy and J. Ružbarský. "Breakdown cause and effect analysis. Case study". Management Systems in Production Engineering, vol. 26, pp. 83-87, 2018.
  • [30] A. Panda, J. Dobránsky, M. Jančík, I. Pandová and M. Kačalová. "Advantages and effectiveness of the powder metallurgy in manufacturing technologies". Metalurgija, vol. 57, no. 4, pp. 353-356, 2018.
  • [31] K. Monkova and P. Monka. "Some aspects influencing production of porous structures with complex shapes of cells". Lecture Notes in Mechanical Engineering, pp. 267- 276, 2017.
  • [32] Ľ. Straka, I. Čorný and J. Piteľ. "Prediction of the geometrical accuracy of the machined surface of the tool steel EN X30WCrV9-3 after electrical discharge machining with CuZn37 wire electrode". Metals, vol. 7, no. 11, pp. 1-19, 2017.
  • [33] Ľ. Straka, I. Čorný and J. Piteľ. "Properties evaluation of thin microhardened surface layer of tool steel after wire EDM". Metals, vol. 6, no. 5, pp. 1-16, 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0af4ae22-a8bc-4220-b70b-edaa150672be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.