PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen evolution reaction (HER) activity of conical Co–Fe alloy structures and their application as a sensitive and rapid sensor for H2O2 detection

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the conical Co–Fe alloy structures were synthesized by two different methods: a two- and a one-step. The synthesis of nanoconical structures with regular, well-defined geometrical features, called the two-step method, requires using porous Anodic Alumina Oxide (AAO) templates. Contrary, any advanced pre-preparation of the substrate is not necessary for the one-step method. The fabrication of cones is carried out from the electrolyte containing an addition of a crystal modifier. Co and Fe are applied as electrodes in an alkaline environment. Their catalytic performance can be enhanced by modification of the shape and size of their structures, and in consequence, developing their active surface area. Many methods were used to analyze the coatings, such as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDS), Energy-Dispersive X-ray Spectrometry (EDAX), X-ray Photoelectron Spectroscopy (XPS), and X-ray diffraction analysis (XRD). The catalytic properties of the coatings were recorded during the hydrogen evolution reaction and the reduction of the hydrogen peroxide and compared with the catalytic activity of bulk alloy. Nanocones produced in AAO templates were characterized by significantly higher catalytic activity and sensitivity in both reactions. However, they were unstable in the time of the experiment duration. Cones synthesized by the one-step method can be successfully applied as a catalyst and H2O2 detector.
Rocznik
Strony
art. no. e76, 1--10
Opis fizyczny
Bibliogr. 36 poz., il., tab., wykr.
Twórcy
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
autor
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
  • Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland
  • Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland
  • Faculty of Non-Ferrous Metals, AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • 1. Sulka GD, Brzózka A, Liu L. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates. Electrochim Acta. 2011;56:4972-9. https://doi.org/10.1016/j.electacta.2011.03.126.
  • 2. Zaraska L, Jaskuła M, Sulka GD. Porous anodic alumina layers with modulated pore diameters formed by sequential anodizing in different electrolytes. Mater Lett. 2016;171:315-318. https://doi.org/10.1016/j.matlet.2016.02.113.
  • 3. Jani AM, Losic D, Voelcker NH. Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci. 2013;58:636-704. https://doi.org/10.1016/j.pmatsci.2013.01.002.
  • 4. Bashir S, Liu J. Nanomaterials and their application. In: Adv. Nanomater. Their Appl. Renew. Energy, Elsevier, 2015; p. 1-50. https://doi.org/10.1016/B978-0-12-801528-5.00001-4.
  • 5. Poges S, Jin J, Guild C, Li WN, Birnkrant M, Suib SL. Preparation and characterization of aluminum coatings via electroless plating onto nickel nanowires using ionic liquid plating solution. Mater Chem Phys. 2018;207:303-308. https://doi.org/10.1016/j.matchemphys.2017.12.079.
  • 6. Chime UK, Ezema FI, Marques-Hueso J. Porosity and hole diameter tuning on nanoporous anodic aluminium oxide membranes by one-step anodization. Optik (Stuttg). 2018;174:558-62. https://doi.org/10.1016/j.ijleo.2018.08.109.
  • 7. Bao R, Jiao K, He H, Zhuang J, Yue B. Fabrication of metal oxide nanowires templated by SBA-15 with adsorption-precipitation method. 2007; p. 267-270. https://doi.org/10.1016/S0167-2991(07)80314-4.
  • 8. Chung CK, Tu KT, Chang CY, Peng YC. Fabrication of thin-film spherical anodic alumina oxide templates using a superimposed nano-micro structure. Surf Coatings Technol. 2019;361:170-175. https://doi.org/10.1016/j.surfcoat.2019.01.032.
  • 9. Stepniowski WJ, Zasada D, Bojar Z. First step of anodization influences the final nanopore arrangement in anodized alumina. Surf Coatings Technol. 2011;206:1416-22. https://doi.org/10.1016/j.surfcoat.2011.09.004.
  • 10. Zaraska L, Sulka GD, Jaskuła M. Porous anodic alumina membranes formed by anodization of AA1050 alloy as templates for fabrication of metallic nanowire arrays. Surf Coatings Technol. 2010;205:2432–7. https://doi.org/10.1016/j.surfcoat.2010.09.038.
  • 11. Hashemzadeh M, Raeissi K, Ashrafizadeh F, Khorsand S. Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings. Surf Coatings Technol. 2015;283:318–28. https://doi.org/10.1016/j.surfcoat.2015.11.008.
  • 12. Kim MJ, Alvarez S, Chen Z, Fichthorn KA, Wiley BJ. Single-Crystal Electrochemistry Reveals Why Metal Nanowires Grow. J Am Chem Soc. 2018;140:14740-6. https://doi.org/10.1021/jacs.8b08053.
  • 13. Skibińska K, Semeniuk S, Kutyła D, Jędraczka A, Żabiński P. Study on synthesis and modification of conical Ni structures by one-step method. 2021;66: 861–69. https://doi.org/10.24425/amm.2021.136391.
  • 14. Lee JM, Jung KK, Lee SH, Ko JS. One-step fabrication of nickel nanocones by electrodeposition using CaCl2•2H2O as capping reagent. Appl Surf Sci. 2016;369:163-169. https://doi.org/10.1016/j.apsusc.2016.02.006.
  • 15. Wang N, Hang T, Shanmugam S, Li M. Preparation and characterization of nickel-cobalt alloy nanostructures array fabricated by electrodeposition. CrystEngComm. 2014;16:6937–43. https://doi.org/10.1039/c4ce00565a.
  • 16. Skibińska K, Huang M, Mutschke G, Eckert K, Włoch G, Wojnicki M, Żabiński P. On the electrodeposition of conically nano-structured nickel layers assisted by a capping agent. J Electroanal Chem. 2022;904: 115935. https://doi.org/10.1016/j.jelechem.2021.115935.
  • 17. Brzózka A, Szeliga D, Kurowska-Tabor E, Sulka GD. Synthesis of copper nanocone array electrodes and its electrocatalytic properties toward hydrogen peroxide reduction. Mater Lett. 2016;174:66-70. https://doi.org/10.1016/j.matlet.2016.03.068.
  • 18. Biswas S, Das S, Jena S, Mitra A, Das S, Das K. Pulse potentiostatic deposition of Fe Zn based intermetallic coatings and evaluation of its catalytic activity for hydrogen evolution reaction. Surf Coatings Technol. 2020;402: 126299. https://doi.org/10.1016/j.surfcoat.2020.126299.
  • 19. Jović VD, Jović BM, Lačnjevac U, Krstajić NV, Zabinski P, Elezović NR. Accelerated service life test of electrodeposited NiSn alloys as bifunctional catalysts for alkaline water electrolysis under industrial operating conditions. J Electroanal Chem. 2018;819:16–25. https://doi.org/10.1016/j.jelechem.2017.06.011.
  • 20. Şahin Ö, Kilinç D, Saka C. Hydrogen production by catalytic hydrolysis of sodium borohydride with a bimetallic solid-state Co-Fe complex catalyst. Sep Sci Technol. 2015. https://doi.org/10.1080/01496395.2015.1016040.
  • 21. Chen J, Liu J, Xie JQ, Ye H, Fu XZ, Sun R, Wong CP. Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide pH range. Nano Energy. 2019;56:225-233. https://doi.org/10.1016/j.nanoen.2018.11.051.
  • 22. Wang Z, Zhang S, Lv X, Bai J, Yu W, Liu J. Electrocatalytic hydrogen evolution on iron-cobalt nanoparticles encapsulated in nitrogenated carbon nanotube. Int J Hydrogen Energy. 2019;44:16478-86. https://doi.org/10.1016/j.ijhydene.2019.04.235.
  • 23. Rahimi S, Shahrokhian S, Hosseini H. Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays-nickel plate current collector as a binder free electrode for fabrication of highly performance supercapacitors. J Electroanal Chem. 2018;810:78–85. https://doi.org/10.1016/j.jelechem.2018.01.004.
  • 24. Hang T, Li M, Fei Q, Mao D (2008) Characterization of nickel nanocones routed by electrodeposition without any template. Nanotechnology. 2008.https://doi.org/10.1088/0957-4484/19/03/035201.
  • 25. Kurowska E, Brzózka A, Jarosz M, Sulka GD, Jaskuła M. Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim Acta. 2013;104:439-447. https://doi.org/10.1016/j.electacta.2013.01.077.
  • 26. Chen S, Yuan R, Chai Y, Hu F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta. 2013;180:15-32. https://doi.org/10.1007/s00604-012-0904-4.
  • 27. Sang Y, Zhang L, Li YF, Chen LQ, Xu JL, Huang CZ. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles. Anal Chim Acta. 2010;659:224–8. https://doi.org/10.1016/j.aca.2009.11.031.
  • 28. Sitnikova NA, Borisova AV, Komkova MA, Karyakin AA. Superstable advanced hydrogen peroxide transducer based on transition metal hexacyanoferrates. Anal Chem. 2011;83:2359–63. https://doi.org/10.1021/ac1033352.
  • 29. Koza JA, Karnbach F, Uhlemann M, McCord J, Mickel C, Gebert A, Baunack S, Schultz L. Electrocrystallisation of CoFe alloys under the influence of external homogeneous magnetic fields-Properties of deposited thin films. Electrochim Acta. 2010;55:819-831. https://doi.org/10.1016/j.electacta.2009.08.069.
  • 30. Skibińska PŻK, Kutyła D, Kołczyk-Siedlecka K, Marzec MM, Kowalik R. Synthesis of conical Co-Fe alloys structures obtained with crystal modifier in superimposed magnetic. Arch Civ Mech Eng. 2021. https://doi.org/10.1007/s43452-021-00315-2.
  • 31. Skibinska K, Kolczyk-Siedlecka K, Kutyla D, Jedraczka A, Leszczyńska-Madej B, Marzec MM, Zabinski P. Electrocatalytic properties of Co nanoconical structured electrodes produced by a one-step or two-step method. Catalysts. 2021;11:544. https://doi.org/10.3390/catal11050544.
  • 32. Beamson G, Briggs D. High Resolution XPS of Organic Polymers: The Scienta ESCA300 Database. J Chem Educ. 1993; 70: A25. Doi: https://doi.org/10.1021/ed070pA25.5
  • 33. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257:2717-30. https://doi.org/10.1016/J.APSUSC.2010.10.051.
  • 34. Wagner JRJRAD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ. NIST Standard Reference Database 2001; 20. https://doi.org/10.18434/T4T88K.
  • 35. Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal. 2004;36:1564-74. https://doi.org/10.1002/sia.1984.
  • 36. Skibińska K, Kołczyk-Siedlecka K, Kutyła D, Gajewska M, Żabiński P. Synthesis of Co-Fe 1D nanocone array electrodes using aluminum oxide template. Materials (Basel). 2021;14:1717. https://doi.org/10.3390/ma14071717.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0af2f1cc-a983-47a9-91ee-b2d36cb7356f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.