PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The 2020 Perachora peninsula earthquake sequence (Εast Corinth Rift, Greece): spatiotemporal evolution and implications for the triggering mechanism

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we study the January 1, 2020 – June 8, 2021, earthquake activity in the East Corinth Rift (central Greece), one of the most seismically active areas in Europe. During this period an intense earthquake sequence occurred in the Perachora peninsula, presenting the characteristics of swarm activity. We present a relocated earthquake catalogue for the area, derived with the double-difference algorithm, and study the spatiotemporal evolution of the 2020 Perachora peninsula earthquake sequence and the possible triggering mechanisms. The Perachora sequence presents distinct characteristics of earthquake migration along a N 103º E direction, as indicated by the Principal Component Analysis, from the east toward northwest and then west, with successive deepening of the events. This migration pattern is compatible with a pore-fluid pressure triggering front of hydraulic diffusivity of D =2.8 m2 /s and an average velocity of 0.22 km/day. In addition, the sequence presents sub-diffusion, with a diffusion exponent of 0.89±0.06. The analysis, overall, indicates that the Perachora sequence was triggered at shallow depths by fluid overpressures, possibly generated by down-going fuxes of meteoric fluids, and then driven by pore-fluid pressure diffusion along the activated structures.
Czasopismo
Rocznik
Strony
2581--2601
Opis fizyczny
Bibliogr. 90 poz.
Twórcy
  • Section of Geophysics–Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
  • Section of Geophysics–Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
  • Section of Geophysics–Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
  • Section of Geophysics–Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
  • Section of Geophysics–Geothermics, Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
  • Institute of Physics of Earth’s Interior and Geohazards, UNESCO Chair On Solid Earth Physics and Geohazards Risk Reduction, Hellenic Mediterranean University Research Center, Crete, Greece
Bibliografia
  • 1. Ambraseys NN, Jackson JA (1997) Seismicity and strain in the Gulf of Corinth (Greece) since 1694. J Earthq Eng 1:433–474. https://doi.org/10.1080/13632469708962374
  • 2. Antonioli A, Piccinini D, Chiaraluce L, Cocco M (2005) Fluid flow and seismicity pattern: evidence from the 1997 Umbria-Marche (central Italy) seismic sequence. Geophys Res Lett 32:L10311. https://doi.org/10.1029/2004GL022256
  • 3. Armijo R, Meyer B, King GCP, Rigo A, Papanastassiou D (1996) Quaternary evolution of the Corinth Rift and its implications for the Late cenozoic evolution of the Aegean. Geophys J Int 126:11–53. https://doi.org/10.1111/j.1365-246X.1996.tb05264.x
  • 4. Baker C, Hatzfeld DL, Lyon-Caen H, Papadimitriou E, Rigo A (1997) Earthquake mechanisms of the Adriatic sea and Western Greece: implications for the oceanic subduction-continental collision transition. Geophys J Int 131:559–594. https://doi.org/10.1111/j.1365-246X.1997.tb06600.x
  • 5. Benoit JP, McNutt SR (1996) Global volcanic earthquake swarm database 1979–1989. US Geol Surv Open File Rep 96–69:333
  • 6. Berkowitz B, Cortis A, Dentz M, Scher H (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev Geophys. https://doi.org/10.1029/2005RG000178
  • 7. Bernard P, Briole P, Meyer B, Gomez J, Tiberi C, Berge C, Cattin R, Hatzfeld D, Lachet C, Lebrun B, Deschamps A, Courboulex F, Larroque C, Rigo A, Massonnet D, Papadimitriou P, Kassaras J, Diagourtas D, Makropoulos K, Veis G, Papazisi E, Mitsakaki C, Karakostas V, Papadimitriou E (1997) The Ms=6.2, June 15, 1995 Aigion earthquake (Greece): evidence for low-angle normal faulting in the Corinth rift. J Seismol 1:131–150. https://doi.org/10.1023/A:1009795618839
  • 8. Bouchaud JP, Georges A (1990) Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys Rep 195:127–293. https://doi.org/10.1016/0370-1573(90)90099-N
  • 9. Bourouis S, Cornet FH (2009) Microseismic activity and fluid fault interactions: some results from the Corinth Rift Laboratory (CRL), Greece. Geophys J Int 178:561–580. https://doi.org/10.1111/j.1365-246X.2009.04148.x
  • 10. Briole P, Ganas A, Elias P, Dimitrov D (2021) The GPS velocity field of the Aegean. New observations, contribution of the earthquakes, crustal blocks model. Geophys J Int 226:468–492. https://doi.org/10.1093/gji/ggab089
  • 11. Briole P, Rigo A, Lyon-Caen H, Ruegg J, Papazissi K, Mistakaki C, Balodimou A, Veis G, Hatzfeld D, Deschamps A (2000) Active deformation of the gulf of Korinthos, Greece: results from repeated GPS surveys between 1990 and 1995. J Geophys Res 105:25605–25625. https://doi.org/10.1029/2000JB900148
  • 12. Chen X, Shearer PM (2011) Comprehensive analysis of earthquake source spectra and swarms in the Salton trough, California. J Geophys Res - Sol Ear 116(B9):B09309. https://doi.org/10.1029/2011JB008263
  • 13. Chen X, Shearer PM, Abercrombie RE (2012) Spatial migration of earthquakes within seismic clusters in Southern California: evidence for fluid diffusion. J Geophys Res - Sol Ear 117(B4):B04301. https://doi.org/10.1029/2011JB008973
  • 14. Chousianitis K, Ganas A, Gianniou M (2013) Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements. J Geodyn 71:1–13. https://doi.org/10.1016/j.jog.2013.06.004
  • 15. Clarke P, Davies R, England P, Parsons B, Billiris H, Paradissis D, Veis G, Cross P, Denys P, Ashkenazi V, Bingley R, Kahle HG, Müller MV, Briole P (1998) Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997. Geophys J Int 134:195–214. https://doi.org/10.1046/j.1365-246X.1998.00633.x
  • 16. Cornet FH, Bernard P, Moretti I (2004) The Corinth Rift laboratory. Compt Rendus Geosci 336(4/5):235–241. https://doi.org/10.1016/j.crte.2004.02.001
  • 17. De Barros L, Cappa F, Deschamps A, Dublanchet P (2020) Imbricated aseismic slip and fluid diffusion drive a seismic swarm in the Corinth gulf Greece. Geophys Res Lett 47:e2020GL087142. https://doi.org/10.1029/2020GL087142
  • 18. Doutsos T, Pe-Piper G, Boronkay K, Koukouvelas I (1993) Kinematics of the Central Hellenides. Tectonics 12:936–953. https://doi.org/10.1029/93TC00108
  • 19. Duverger C, Godano M, Bernard P, Lyon-Caen H, Lambotte S (2015) The 2003–2004 seismic swarm in the western Corinth rift: Evidence for a multiscale pore pressure diffusion process along a permeable fault system. Geophys Res Lett 42:7374–7382. https://doi.org/10.1002/2015GL065298
  • 20. Duverger C, Lambotte S, Bernard P, Lyon-Caen H, Deschamps A, Nercessian A (2018) Dynamics of microseismicity and its relationship with the active structures in the western Corinth Rift (Greece). Geophys J Int 215:196–221. https://doi.org/10.1093/gji/ggy264
  • 21. Evangelidis CP, Triantafyllis N, Samios M, Boukouras K, Kontakos K, Ktenidou O-J, Fountoulakis I, Kalogeras I, Melis NS, Galanis O, Papazachos CB, Hatzidimitriou P, Scordilis E, Sokos E, Paraskevopoulos P, Serpetsidaki A, Kaviris G, Kapetanidis V, Papadimitriou P, Voulgaris N, Kassaras I, Chatzopoulos G, Makris I, Vallianatos F, Kostantinidou K, Papaioannou C, Theodoulidis N, Margaris B, Pilidou S, Dimitriadis I, Iosif P, Manakou M, Roumelioti Z, Pitilakis K, Riga E, Drakatos G, Kiratzi A, Tselentis GA (2021) Seismic waveform data from Greece and cyprus: integration, archival, and open access. Seismol Res Lett 92:1672–1684. https://doi.org/10.1785/0220200408
  • 22. Eyre TS, Zecevic M, Salvage RO, Eaton DW (2020) A long-lived swarm of hydraulic fracturing-induced seismicity provides evidence for aseismic slip. Bull Seismol Soc Am 110:2205–2215. https://doi.org/10.1785/0120200107
  • 23. Fischer T, Horálek J, Hrubcová P, Vavryčuk V, Bräuer K, Kämpf H (2014) Intra-continental earthquake swarms in West-Bohemia and Vogtland: a review. Tectonophysics 611:1–27. https://doi.org/10.1016/j.tecto.2013.11.001
  • 24. Ganas Α (2020) NOAFAULTS KMZ layer Version 3.0 (2020 update) (V3.0). Zenodo. 10.5281/zenodo.4304613
  • 25. Gautier S, Latorre D, Virieux J, Deschamps A, Skarpelos C, Sotiriou A, Serpetsidaki A, Tselentis GA (2006) A new passive tomography of the Aigion area (Gulf of Corinth, Greece) from the 2002 data set. Pure Appl Geophys 163:431–453. https://doi.org/10.1007/s00024-005-0033-7
  • 26. Grünthal G, Wahlström R, Stromeyer D (2013) The SHARE European earthquake catalogue (SHEEC) for the time period 1900–2006 and its comparison to the European-Mediterranean earthquake catalogue (EMEC). J Seismol 17(4):1339–1344. https://doi.org/10.1007/s10950-013-9379-y
  • 27. Guglielmi Y, Cappa F, Avouac JP, Henry P, Elsworth D (2015) Seismicity triggered by fluid injection-induced aseismic slip. Science 6240:1224–1226. https://doi.org/10.1126/science.aab0476
  • 28. Hainzl S (2004) Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophys J Int 159:1090–1096. https://doi.org/10.1111/j.1365-246X.2004.02463.x
  • 29. Hatzfeld D, Karakostas V, Ziazia M, Kassaras I, Papadimitriou E, Makropoulos K, Voulgaris N, Papaioannou C (2000) Microseismicity and faulting geometry in the Gulf of Corinth (Greece). Geophys J Int 141:438–456. https://doi.org/10.1046/j.1365-246x.2000.00092.x
  • 30. Hatzfeld D, Kementzetzidou D, Karakostas V, Ziazia M, Nothard S, Diagourtas D, Deschamps A, Karakaisis G, Papadimitriou P, Scordilis M, Smith R, Voulgaris N, Kiratzi S, Makropoulos K, Bouin MP, Bernard P (1996) The Galaxidi earthquake of 18 November 1992: a possible asperity within the normal fault system of the Gulf of Corinth (Greece). Bull Seismol Soc Am 86(6):1987–1991. https://doi.org/10.1785/BSSA0860061987
  • 31. Helmstetter A, Ouillon G, Sornette D (2003) Are aftershocks of large Californian earthquakes diffusing? J Geophys Res - Sol Ear 108:2483. https://doi.org/10.1029/2003JB002503
  • 32. Hill DP (1977) A model for earthquake swarms. J Geophys Res 82:1347–1352. https://doi.org/10.1029/JB082i008p01347
  • 33. Huc M, Main IG (2003) Anomalous stress diffusion in earthquake triggering: correlation length, time dependence, and directionality. J Geophys Res - Sol Ear. https://doi.org/10.1029/2001JB001645
  • 34. Jackson JA, Gagnepain J, Houseman G, King GCP, Papadimitriou P, Soufleris C, Virieux J (1982) Seismicity, normal faulting, and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and March 1981. Earth Planet Sci Lett 57:377–397. https://doi.org/10.1016/0012-821X(82)90158-3
  • 35. Jolliffe IT (2002) Principal component analysis. Springer, New York
  • 36. Kapetanidis V (2017) Spatiotemporal patterns of microseismicity for the identification of active fault structures using seismic waveform cross-correlation and double-difference relocation. University of Athens, Greece
  • 37. Kapetanidis V, Deschamps A, Papadimitriou P, Matrullo E, Karakonstantis A, Bozionelos G, Kaviris G, Serpetsidaki A, Lyon-Caen H, Voulgaris N, Bernard P, Sokos E, Makropoulos K (2015) The 2013 earthquake swarm in Helike, Greece: seismic activity at the root of old normal faults. Geophys J Int 202:2044–2073. https://doi.org/10.1093/gji/ggv249
  • 38. Kapetanidis V, Michas G, Kaviris G, Vallianatos F (2021) Spatiotemporal properties of seismicity and variations of shear-wave splitting parameters in the Western Gulf of Corinth (Greece). Appl Sci 11:6573. https://doi.org/10.3390/app11146573
  • 39. Karakonstantis A (2017) 3-D simulation of crust and upper mantle structure in the broader Hellenic area through Seismic Tomography. National and Kapodistrian University of Athens, Greece
  • 40. Kaviris G, Papadimitriou P, Makropoulos K (2007) Magnitude scales in Central Greece. Bull Geol Soc Greece 40:1114–1124. https://doi.org/10.12681/bgsg.16838
  • 41. Kaviris G, Kapetanidis V, Kravvariti P, Karakonstantis A, Bozionelos G, Papadimitriou P, Voulgaris N, Makropoulos K (2014) Anisotropy study in Villia (E. Corinth Gulf Greece). 2nd European Conference on Earthquake Engineering and Seismology, Istanbul
  • 42. Kaviris G, Spingos I, Kapetanidis V, Papadimitriou P, Voulgaris N, Makropoulos K (2017) Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the western Gulf of Corinth (Greece) during 2013. Phys Earth Planet in 269:148–164. https://doi.org/10.1016/j.pepi.2017.06.006
  • 43. Kaviris G, Elias P, Kapetanidis V, Serpetsidaki A, Karakonstantis A, Plicka V, De Barros L, Sokos E, Kassaras I, Sakkas V, Spingos I, Lambotte S, Duverger C, Lengliné O, Evangelidis CP, Fountoulakis I, Ktenidou O, Gallovič F, Bufféral S, Klein E, Aissaoui EM, Scotti O, Lyon-Caen H, Rigo A, Papadimitriou P, Voulgaris N, Zahradnik J, Deschamps A, Briole P, Bernard P (2021) The Western Gulf of Corinth (Greece) 2020–2021 Seismic Crisis and Cascading Events: first results from the Corinth Rift laboratory network. Seism Rec 1:85–95. https://doi.org/10.1785/0320210021
  • 44. King GCP, Ouyang ZX, Papadimitriou P, Deschamps A, Gagnepain J, Houseman G, Jackson JA, Soufleris C, Virieux J (1985) The evolution of the Gulf of Corinth (Greece): an aftershock study of the 1981 earthquakes. Geophys J Int 80:677–693. https://doi.org/10.1111/j.1365-246X.1985.tb05118.x
  • 45. Kissling E, Ellsworth WL, Eberhart-Phillips D, Kradolfer U (1994) Initial reference models in local earthquake tomography. J Geophys Res - Sol Ear 99:19635–19646. https://doi.org/10.1029/93JB0313
  • 46. Klein FW (2002) User’s guide to HYPOINVERSE-2000, a fortran program to solve for earthquake locations and magnitudes; Open-File Report 2002-171; U.S. Geological Survey: Menlo Park, CA, USA, 2002:2002–2171. https://doi.org/10.3133/ofr02171
  • 47. Kraft T, Wassermann J, Schmedes E, Igel H (2006) Meteorological triggering of earthquake swarms at Mt. Hochstaufen. SE-Germany Tectonophys 424:245–258. https://doi.org/10.1016/j.tecto.2006.03.044
  • 48. Lambotte S, Lyon-Caen H, Bernard P, Deschamps A, Patau G, Nercessian A, Pacchiani F, Bourouis S, Drilleau M, Adamova P (2014) Reassessment of the rifting process in the Western Corinth Rift from relocated seismicity. Geophys J Int 197:1822–1844. https://doi.org/10.1093/gji/ggu096
  • 49. Liotier Y (1989) Modelisation des ondes de volume des siismes de I'arc Egeen. DEA de I'Universiti Joseph Fourier, Grenoble
  • 50. Lohman RB, McGuire JJ (2007) Earthquake swarms driven by aseismic creep in the Salton Trough, California. J Geophys Res Solid Earth 112(B4):B04405. https://doi.org/10.1029/2006JB004596
  • 51. Makropoulos K, Kaviris G, Kouskouna V (2012) An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat Hazards Earth Syst Sci 12(5):1425–1430. https://doi.org/10.5194/nhess-12-1425-2012
  • 52. Marsan D, Bean CJ, Steacy S, McCloskey J (2000) Observation of diffusion processes in earthquake populations and implications for the predictability of seismicity systems. J Geophys Res 105:28081–28094. https://doi.org/10.1029/2000JB900232
  • 53. McKernon C, Main IG (2005) Regional variations in the diffusion of triggered seismicity. J Geophys Res-Sol Ear 110:B05S05
  • 54. McNeill LC, Shillington DJ, Carter GDO, Everest JD, Gawthorpe RL, Miller C, Phillips MP, Collier REL, Cvetkoska A, De Gelder G, Diz P, Doan ML, Ford M, Geraga M, Gillespie J, Hemelsdaël R, Herrero-Bervera E, Ismaiel M, Janikian L, Kouli K, Le Ber E, Li S, Maffione M, Mahoney C, Machlus ML, Michas G, Nixon CW, Oflaz SA, Omale AP, Panagiotopoulos K, Pechlivanidou S, Sauer S, Seguin J, Sergiou S, Zakharova NV, Green S (2019b) High-resolution record reveals climate-driven environmental and sedimentary changes in an active rift. Sci Reports 9:1–11. https://doi.org/10.1038/s41598-019-40022-w
  • 55. McNeill LC, Shillington DJ, Carter GDO, Expedition 381 Participants (2019a). Corinth Active Rift Development. Proceedings of the International Ocean Discovery Program, 381, College Station, TX, International Ocean Discovery Program. https://doi.org/10.14379/iodp.proc.381.2019a
  • 56. Mechernich S, Schneiderwind S, Mason J, Papanikolaou ID, Deligiannakis G, Pallikarakis A, Binnie SA, Dunai TJ, Reicherter K (2018) The seismic history of the Pisia fault (eastern Corinth rift, Greece) from fault plane weathering features and cosmogenic 36Cl dating. J Geophys Res-Sol Ear 123(5):4266–4284. https://doi.org/10.1029/2017JB014600
  • 57. Mesimeri M, Karakostas V, Papadimitriou E, Schaff D, Tsaklidis G (2016) Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece). J Seismol 20:595–614. https://doi.org/10.1007/s10950-015-9546-4
  • 58. Mesimeri M, Karakostas V, Papadimitriou E, Tsaklidis G (2019) Characteristics of earthquake clusters: application to western Corinth Gulf (Greece). Tectonophysics 767:228160. https://doi.org/10.1016/j.tecto.2019.228160
  • 59. Mesimeri M, Karakostas V, Papadimitriou E, Tsaklidis G, Jacobs K (2018) Relocation of recent seismicity and seismotectonic properties in the Gulf of Corinth (Greece). Geophys J Int 212:1123–1142. https://doi.org/10.1093/gji/ggx450
  • 60. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77. https://doi.org/10.1016/S0370-1573(00)00070-3
  • 61. Michas G, Kapetanidis V, Kaviris G, Vallianatos F (2021) Earthquake diffusion variations in the Western Gulf of Corinth (Greece). Pure Appl Geophys 178:2855–2870. https://doi.org/10.1007/s00024-021-02769-0
  • 62. Michas G, Vallianatos F (2018) Modelling earthquake diffusion as a continuous-time random walk with fractional kinetics: the case of the 2001 Agios Ioannis earthquake swarm (Corinth Rift). Geophys J Int 215:333–345. https://doi.org/10.1093/gji/ggy282
  • 63. Michas G, Vallianatos F (2020) Scaling properties and anomalous diffusion of the Florina micro-seismic activity: fluid driven? Geomech Energy Environ 24:100155. https://doi.org/10.1016/j.gete.2019.100155
  • 64. Michas G, Vallianatos F, Sammonds P (2015) Statistical mechanics and scaling of fault populations with increasing strain in the Corinth Rift. Earth Planet Sc Lett 431:150–163. https://doi.org/10.1016/j.epsl.2015.09.014
  • 65. Morewood NC, Roberts GP (1999) Lateral propagation of the surface trace of the South Alkyonides normal fault segment, central Greece: its impact on models of fault growth and displacement–length relationships. J Struct Geol 21:635–652. https://doi.org/10.1016/S0191-8141(99)00049-8
  • 66. O’Brien GS, Bean CJ, McDermott F (2003) A numerical study of passive transport through fault zones. Earth Planet Sc Lett 214:633–643. https://doi.org/10.1016/S0012-821X(03)00398-4
  • 67. Pacchiani F, Lyon-Caen H (2010) Geometry and spatio-temporal evolution of the 2001 Agios Ioanis earthquake swarm (Corinth Rift, Greece). Geophys J Int 180:59–72. https://doi.org/10.1111/j.1365-246X.2009.04409.x
  • 68. Papadimitriou P, Kaviris G, Karakonstantis A, Makropoulos K (2010) The Cornet seismological network: 10 years of operation, recorded seismicity and significant applications. Hellenic J Geosci 45:193–208
  • 69. Papadimitriou P, Kaviris G, Makropoulos K (1999) Evidence of shear-wave splitting in the eastern Corinthian Gulf (Greece). Phys Earth Planet Inter 114:3–13. https://doi.org/10.1016/S0031-9201(99)00041-2
  • 70. Papazachos B, Papazachou K (2003) The Earthquakes of Greece. Ziti publications, Thessaloniki ((in Greek))
  • 71. Parotidis M, Rothert E, Shapiro SA (2003) Pore-pressure diffusion: a possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW-Bohemia, central Europe. Geophys Res Lett. https://doi.org/10.1029/2003GL018110
  • 72. Passarelli L, Rivalta E, Jónsson S, Hensch M, Metzger S, Jakobsdóttir SS, Maccaferi F, Corbi F, Dahm T (2018) Scaling and spatial complementarity of tectonic earthquake swarms. Earth Planet Sc Lett 482:62–70. https://doi.org/10.1016/j.epsl.2017.10.052
  • 73. Roland E, McGuire JJ (2009) Earthquake swarms on transform faults. Geophys J Int 178:1677–1690. https://doi.org/10.1111/j.1365-246X.2009.04214.x
  • 74. Royden LH, Papanikolaou DJ (2011) Slab segmentation and late Cenozoic disruption of the Hellenic arc. Geochem Geophys Geosyst 12:Q03010. https://doi.org/10.1029/2010GC003280
  • 75. Ruhl CJ, Abercrombie RE, Smith KD, Zaliapin I (2016) Complex spatiotemporal evolution of the 2008 Mw 4.9 Mogul earthquake swarm (Reno, Nevada): interplay of fluid and faulting. J Geophys Res - Sol Ear 121:8196–8216. https://doi.org/10.1002/2016JB013399
  • 76. Segall P, Lu S (2015) Injection-induced seismicity: poroelastic and earthquake nucleation effects. J Geophys Res - Sol Ear 120(7):5082–5103. https://doi.org/10.1002/2015JB012060
  • 77. Segall P, Desmarais EK, Shelly D, Miklius A, Cervelli P (2006) Earthquakes triggered by silent slip events on Kīlauea volcano, Hawaii. Nature 442:71–74. https://doi.org/10.1038/nature04938
  • 78. Shapiro SA, Dinske C (2009) Fluid-induced seismicity: pressure diffusion and hydraulic fracturing. Geophys Prospect 57:301–310. https://doi.org/10.1111/j.1365-2478.2008.00770.x
  • 79. Shapiro SA, Huenges E, Borm G (1997) Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys J Int 131:F15–F18. https://doi.org/10.1111/j.1365-246X.1997.tb01215.x
  • 80. Shelly DR, Hill DP, Massin F, Farrell J, Smith RB, Taira TA (2013) A fluid-driven earthquake swarm on the margin of the Yellowstone caldera. J Geophys Res Sol Ear 118:4872–4886. https://doi.org/10.1002/jgrb.50362
  • 81. Shelly DR, Ellsworth WL, Hill DP (2016) Fluid-faulting evolution in high definition: connecting fault structure and frequency-magnitude variations during the 2014 long valley Caldera, California, earthquake swarm. J Geophys Res - Sol Ear 121:1776–1795. https://doi.org/10.1002/2015JB012719
  • 82. Stucchi M, Rovida A, Gomez Capera AA, Alexandre P, Camelbeeck T, Demircioglu MB, Gasperini P, Kouskouna V, Musson RMW, Radulian M, Sesetyan K, Vilanova S, Baumont D, Bungum H, Fäh D, Lenhardt W, Makropoulos K, Martinez Solares JM, Scotti O, Živčić M, Albini P, Batllo J, Papaioannou C, Tatevossian R, Locati M, Meletti C, Viganò D, Giardini D (2013) The SHARE European earthquake catalogue (SHEEC) 1000–1899. J Seismol 17(2):523–544. https://doi.org/10.1007/s10950-012-9335-2
  • 83. Talwani P, Chen L, Gahalaut K (2007) Seismogenic permeability, ks. J Geophys Res 112:B07309. https://doi.org/10.1029/2006JB004665
  • 84. Taymaz T, Jackson J, McKenzie D (1991) Active tectonics of the north and central Aegean Sea. Geophys J Int 106:433–490. https://doi.org/10.1111/j.1365-246X.1991.tb03906.x
  • 85. Vidale JE, Shearer PM (2006) A survey of 71 earthquake bursts across southern California: Exploring the role of pore fluid pressure fluctuations and aseismic slip as drivers. J Geophys Res Solid Earth 111(B5):B05312. https://doi.org/10.1029/2005JB004034
  • 86. Wadati K (1933) On the travel time of earthquake waves. Part II, Geophys Mag 7:101–111
  • 87. Waldhauser F (2001) hypoDD-A program to compute double-difference hypocenter locations. US Geol Surv Open File Rep 01–113:25
  • 88. Wei S, Avouac JP, Hudnut KW, Donnellan A, Parker JW, Graves RW, Helmberger D, Fielding E, Liu Z, Cappa F, Eneva M (2015) The 2012 Brawley swarm triggered by injection-induced aseismic slip. Earth Planet Sc Lett 422:115–125. https://doi.org/10.1016/j.epsl.2015.03.054
  • 89. Wessel P, Smith WHF, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans AGU 94(45):409–410. https://doi.org/10.1002/2013EO450001
  • 90. Wiemer S, Wyss M (2000) Minimum magnitude of complete reporting in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90:859–869. https://doi.org/10.1785/0119990114
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0aee87dc-8969-41c3-a5ee-0b8c63cf8a8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.