PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cathodic deposition of silver particles on anodized titanium

Identyfikatory
Warianty tytułu
PL
Osadzanie katodowe cząstek srebra na tytanie utlenionym anodowo
Języki publikacji
EN
Abstrakty
EN
The paper presents the process of high voltage anodic oxidation of titanium in the electrolyte containing 2 M H3PO4 + 1% HF. The anodization of titanium was performed at various potentials in the range of 30÷210 V and the time of 30 minutes. As a result, a developed surface titanium oxide on titanium was obtained. Then, on the surfaces of the oxides, silver particles were deposited by cathodic method using the electrolyte containing 0.01 M HNO3 + 0.01 M AgNO3. During the deposition of silver particles, a potential of –1 V was applied for 60 s with respect to the open circuit potential. In order to properly characterize the surface, research techniques were used such as XRD, EDS, SEM as well as corrosion testing. The XRD and EDS examinations have shown the presence of the silver particles on the surface of the titanium oxide. The SEM observations were used to assess the shape and surface morphology of the titanium oxide after anodizing and evaluate the amount of silver particles. The silver particles deposited on the anodized titanium surface exhibited a dendritic shape. On the basis of their arrangement and having monitored the deposition process, it can be assumed that they grow directly from the pores on the oxide surface. This is particularly evident in the most developed oxide surface obtained after oxidation of titanium at 210 V. This research allowed determining the suitability of combined anodic and cathodic treatment of titanium in various electrolytes for medical applications — implants. The resulting morphology of the titanium oxide was evaluated, taking into account the features necessary for the proper osseointegration process (structure, high corrosion resistance and surface morphology). Silver deposited on the anodic oxidized titanium surface causes the oxide layer to exhibit additional bactericidal properties, which is extremely advantageous in medical applications. Excess silver has a negative impact on the surrounding tissue in medical applications. For this reason, the dendritic shape of the obtained particles (high surface area) and their relatively small amount generates a potential in medicine applications.
PL
W celu zapewnienia normalnego funkcjonowania organizmu pacjenta po urazie lub uszkodzeniu, wciąż poszukiwane są nowe materiały mogące zastąpić tkankę twardą. Jednym z materiałów dającym na to szansę jest tytan. Po wszczepieniu implantu do organizmu dochodzi na jego powierzchni do osteointegracji. Od jej prawidłowego przebiegu zależy czas leczenia, skuteczność operacji oraz komfort pacjenta. Niniejsza praca wychodzi naprzeciw tym oczekiwaniom. Proces utleniania anodowego jest jedną z częściej stosowanych obróbek powierzchniowych implantów stałych, a utlenianie anodowe w elektrolicie kwasu fosforowego z dodatkiem kwasu fluorowodorowego wciąż nie jest dostatecznie poznane. W pracy dodatkowo przedstawiono możliwość wzbogacenia powstałej powierzchni tlenkowej w cząstki o właściwościach antybakteryjnych, niezbędnych w początkowych etapach osteointegracji. Przedstawione wyniki badań mogą się przyczynić do wytworzenia implantów o lepszych właściwościach powierzchniowych.
Rocznik
Strony
119--124
Opis fizyczny
Bibliogr. 29, fig., tab.
Twórcy
autor
  • Poznan University of Technology, Institute of Materials Science and Engineering, Poznan
  • Poznan University of Technology, Institute of Materials Science and Engineering, Poznan
Bibliografia
  • [1] Thomas P., Summer B.: Implant allergy. Allergologie 34 (2011) 42÷48.
  • [2] Tuliński M.: The effect of titanium addition on the corrosion resistance of nanostructured, austenitic Fe-based alloys. Inżynieria Materiałowa 6 (2015) 405÷408.
  • [3] Jakubowicz J., Koper J. K.: Micorstructure and corrosion resistance of Ti oxidized at high potentials. Inżynieria Materiałowa 4 (2013) 273÷276.
  • [4] Kulkarni M., Mazare A., Gongadze E., Perutkova Š., Kralj-Iglic, V., Milošev I., Schmuki P., Iglič A., Mozetič M.: Titanium nanostructures for biomedical applications. Nanotechnology 26 (2015) Article number 062002.
  • [5] Gittens R. A., Olivares-Navarrete R., Schwartz Z., Boyan B. D.: Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants. Acta Biomaterialia 10 (2014) 3363÷3371.
  • [6] Park J. W., Jang J. H., Jang C. S., Hanava T.: Osteoinductivity of hydrophobic microstructured titanium implants with phosphorate ion chemistry. Acta Biomaterialia 5 (2009) 2311÷2321.
  • [7] Adamek G., Jakubowicz J.: Optical profiler in research into biomaterials. Inżynieria Materiałowa 4 (2013) 241÷244.
  • [8] Goriainov V., Cook R., Latham J. M., Dunlop D. G., Oreffo R. O. C.: Bone and metal: An orthopaedic perspective on osseointegration of metals. Acta Biomaterialia 10 (2014) 4043÷4057.
  • [9] Krysicka-Cydzik E.: Formowanie cienkich warstw anodowych na tytanie i jego implantowanych stopach w środowisku kwasu fosforowego. Monografia, Zielona Góra (2003).
  • [10] Kim S. E., Lim J. H., Lee S., Nam C., Kang H. G., Choi J.: Anodically nanostructured titanium oxides for implant aplications. Electrochemica Acta 53 (2008) 4846÷3851.
  • [11] Sul Y.-T., Johansson C., Byon E., Alberektsson T.: The bone response of oxidized bioactive and non-bioactive titanium implants. Biomaterials 26 (2005) 6720÷6730.
  • [12] Koper J. K., Jakubowicz J.: Corrosion resistance of porous titanium surface prepared at moderate and high potentials in H3PO4/HF electrolytes. Protection of Metals and Physical Chemistry of Surfaces 51 (2015) 295÷303.
  • [13] Li X., Chen T., Hu J., Li S., Zou Q., Li Y., Jiang N., Li H., Li J.: Modified surface morphology of a novel Ti–24Nb–4Zr–7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Colloids and Surfaces B: Biointerfaces 144 (2016) 265÷267.
  • [14] Yang Y., Ao H. Y., Yang S.-B., Wang Y.-G., Lin W.-T., Yu Z.-F., Tang T.- T.: In vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants. International Journal of Nanomedicine 11 (2016) 2223÷2234.
  • [15] Mishra S. K., Ferreira J. M. F., Kannan, S.: Mechanically stable antimicrobial chitosan-PVA-silver nanocomposite coatings deposited on titanium implants. Carbohydrate Polymers 121 (2015) 37÷48.
  • [16] Schmidt R., Hoffmann V., Helth A., Gostin P. F., Calin M., Eckert J., Gebert A.: Electrochemical deposition of hydroxyapatite on beta-Ti–40Nb. Surface and Coatings Technology 294 (2016) 186÷193.
  • [17] Rai M., Yadav A., Gade A.: Silver nanoparticles as a new generation of antimicrobials. Biotechnology Adv. 27 (2009) 76÷83.
  • [18] Necula B. S., Apachitei I., Fratila-Apachitei L. E., van Langelaan E. J., Duszczyk J.: Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability. Applied Surface Science 273 (2013) 310÷314.
  • [19] Li S., Xiong L., Lai G., Mahon P. J., Wang J., Zhu D., Jia B., Malhebe F., Yu A.: Carbon nanotube and graphene oxide directed electrochemical synthesis of silver dendrites. RSC Adv. 4 (2014) 39645÷39650.
  • [20] Li S., Xiong L., Liu S., Xu. P.: Fast fabrication of homogeneous Ag nanostructures on dual-acid doped polyaniline for SERS applications. Materials Chemistry and Physics 125 (2011) 267÷270.
  • [21] Mdluli P. S., Revaprasadu N.: Time dependant evolution of silver nanodendrites. Materials Lett. 63 (2009) 447÷450.
  • [22] Chen Y. P., Zhao Y., Qiu K. Q., Chu J., Yu H. Q., Liu G., Tian Y. C., Xiong Y.: Fabrication of dendritic silver nanostructure using an integration of holographic lithography and electrochemical deposition. Electrochimica Acta 56 (2011) 9088÷9094.
  • [23] Aliasghari S., Skeldon P.,Thompson G. E.: Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings. Applied Surface Science 316 (2014) 463÷476.
  • [24] Kaczmarek M., Jurczyk K., Koper J. K., Paszel-Jaworska A., Romaniuk A., Lipińska N., Zurawski J., Urbaniak P., Jakubowicz J., Jurczyk M. U.: In vitro biocompatibility of anodized titanium with deposited silver nanodendrites. J. Materials Science 51 (2016) 5259÷5270.
  • [25] Koper J. K., Jakubowicz J.: Correlation of wettabillity with surface structure and morphology of the anodically oxidized titanium implants. Journal of Biomaterials and Tissue Engineering 4 (2014) 459÷465.
  • [26] Li Y., Zou S., Wang D., Feng G., Bao C., Hu J.: The effect of hydrofluoric acid treatment on titanium implant osseointegration in ovariectomized rats. Biomaterials 31 (12) (2010) 3266÷3273.
  • [27] Simka W., Sadkowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A.: Characterization of passive films formed on titanium during anodic oxidation. Electrochimica Acta 56 (2011) 8962÷8968.
  • [28] Möller B., Terheyden H., Açil Y., Purcz N. M., Hertrampf K., Tabakov A., Behrens E., Wiltfang J.: A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study. International Journal of Oral and Maxillofacial Surgery 41 (2012) 638÷645.
  • [29] Piscanec S., Colombi Ciacchi L., Vesselli E., Comelli G., Sbaizero O., Meriani S., De Vita A.: Bioactivity of TiN-coated titanium implants. Acta Materialia 52 (2004) 1237÷1245.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0aed84f4-9ba3-4ba6-a4f4-22ce7201353c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.