Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Model przepływu fragmentów skalnych pod wpływem sił ciężkości przy eksploatacji podpoziomowej złoża rudy o średniej miąższości
Języki publikacji
Abstrakty
The draw theory is the foundation for decreasing ore loss and dilution indices while extracting de-posits from mines. Therefore, research on draw theory is of great significance to optimally guide the draw control and improve the economy efficiency of mines. The laboratory scaled physical draw experiments under inclined wall condition conducted showed that a new way was proposed to investigate the flow zone of granular materials. The flow zone was simply divided into two parts with respect to the demarcation point of the flow axis. Based on the stochastic medium draw theory, theoretical movement formulas were derived to define the gravity flow of fragmented rocks in these two parts. The ore body with 55° dip and 10 m width was taken as an example, the particle flow parameters were fitted, and the corresponding theoretical shape of the draw body was sketched based on the derived equation of draw-body shape. The comparison of experimental and theoretical shapes of the draw body confirmed that they coincided with each other; hence, the reliability of the derived equation of particle motion was validated.
Teorie dotyczące urabiania skał stanowią podstawę do działań mających na celu zmniejszenie wielkości strat rudy i wartości opisujących je współczynników w trakcie wybierania złóż. Dlatego też prowadzenie prac teoretycznych ma kluczowe znaczenie dla opracowania optymalnej strategii wybierania i poprawy ogólnej wydajności kopalni. Przeprowadzone eksperymentalne prace wydobywcze w wyrobiskach nachylonych prowadzone w warunkach laboratoryjnych wskazały celowość badania stref przepływu materiałów ziarnistych. Strefę przepływu podzielono na dwie części odpowiednio umiejscowione względem punktu demarkacyjnego na osi przepływu. W oparciu o teorie urabiania dla ośrodka stochastycznego wyprowadzono odpowiednie równania ruchu opisujące przepływ rozdrobnionego materiału skalnego w obydwu tych strefach pod wpływem sił ciężkości. Jako przykład rozpatrywano złoże rudy o nachyleniu 55° i szerokości 10 m, parametry przepływu cząstek skalnych zostały dobrane drogą dopasowania a prognozowany profil złoża wykreślono w oparciu o odpowiednie równania kształtu. Porównanie przewidywanego i rzeczywistego kształtu profilu złoża wykazało ich dużą zbieżność, tym samym potwierdzając wiarygodność opracowanego równania ruchu cząstek skał.
Wydawca
Czasopismo
Rocznik
Tom
Strony
533--546
Opis fizyczny
Bibliogr. 46 poz., fot., tab., wykr.
Twórcy
autor
- College of Resource and Civil Engineering, Northeastern University, Shenyang, Liaoning 110819, China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
autor
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
autor
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
Bibliografia
- [1] Brunton I., Fraser S., Hodgkinson J., Stewart P., 2010. Parameters influencing full scale sublevel caving material recovery at the Ridgeway gold mine. Int. J. Rock Mech. Min. Sci. 47, 647-656.
- [2] Castro R., 2006. Study of the Mechanisms of Granular Flow for Block Caving. University of Queensland.
- [3] Castro R., Trueman R., Halim A., 2007. A study of isolated draw zones in block caving mines by means of a large 3D physical model. Int. J. Rock Mech. Min. Sci. 44, 6, 860-870.
- [4] Castro R., Pineda M., 2015. The role of gravity flow in the design and planning of large sublevel stopes. J. S. Afr. Inst. Mini. Metall. 115, 2, 113-118.
- [5] Castro R.L., Fuenzalida M.A., Lund F., 2014. Experimental study of gravity flow under confined conditions. Int. J. Rock Mech. Min. Sci. 67, 164-169.
- [6] Chen G., 1997. Stochastic modelling of rock fragment flow under gravity. Int. J. Rock Mech. Min. Sci. 34, 2, 323-331.
- [7] Cleary P.W., Sawley M.L., 2002. DEM modelling of industrial granular flows: 3D case studies and the effect of particie shape on hopper discharge. Appl. Math Modell. 26, 2, 89-111.
- [8] Cundall P.A., Strack O.D., 1979. A discrete numerical model for granular assemblies. Géotechnique 29, 1, 47-65.
- [9] Hancock W., 2013. Gravity flow of rock in caving mines: numerical modelling of isolated, interactive and non-ideal draw. Dissertation, The University of Queensland, Brisbane, Australia.
- [10] Huang X., Zhao Q.H., 1986. A numerical analog study on drawing in caving with inclined walls. Nonferrous Met 38, 2, 1-6.
- [11] Irazábal J., Salazar F., Oñate E., 2017. Numerical modelling of granular materials with spherical discrete particles and the bounded rolling friction model. Application to railway ballast. Comput. Geotech. 85, 220-229.
- [12] Janelid I., Kvapil R., 1966. Sublevel caving. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 3, 2, 129-132.
- [13] Janelid I., 1972. Study of the gravity flow process in sublevel caving. In Proceedings of the International Sublevel Caving Symposium, Stockholm, Sweden, 25-27 September; Atlas Copco: Stockholm, Sweden.
- [14] Jin A.B., Sun H., Ma G.W., Gao Y.T., Wu S.C., Meng X.Q., 2016. A Study on the draw laws of caved ore and rock using the discrete element method. Comput. Geotech. 80, 59-70.
- [15] Jin A.B., Sun H., Wu S.C., Gao Y.T., 2017. Confirmation of the upside-down drop shape theory in gravity flow and development of a new empirical equation to calculate the shape. Int. J. Rock Mech. Min. Sci. 92, 91-98.
- [16] Jolley D., 1968. Computer simulation of the movement of ore and waste in an underground mining pillar. Canada Mining and Metal Bulletin 675, 854-859.
- [17] Kuchta M.E., 2012. A revised form of the Bergmark-Ross equation for describing the gravity flow of broken rock. Min. Resour. Eng. 11, 349-360.
- [18] Kvapil R., 1965a. Gravity flow of granular materials in hoppers and bins Part I. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 2, 1, 25-34.
- [19] Kvapil R., 1965b. Gravity flow of granular materials in hoppers and bins Part II. Coarse material. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 2, 3, 277-304.
- [20] Lapčević V., Torbica S., 2017. Numerical investigation of caved rock mass friction and fragmentation change influence on gravity flow formation in sublevel caving. Minerals 7, 4, 56.
- [21] Laubscher D.H., 1994. Cave mining – The state of the art. J. S. Afr. Inst. Min. Metall. 94, 10, 279-293.
- [22] Li R.F., 1983. The unified mathematical equations of the basic laws of ore drawing. Nonferrous Met.(Min. Sect.) 1, 1-7.
- [23] Litwiniszyn J., 1956. Application of the equation of stochastic processes to mechanics of loose bodies. Arch. Mech. 8, 4, 393-411.
- [24] Liu X.G., 1979. The basic movement law of caved ore and rock in caving mining (part I)-research on the ellipsoid theory. Nonferrous Met. (Min. Sect.) 4, 38-44).
- [25] Малахов Г.М., 1958. Drawing of caved ore (Yang QR, Liu XG Trans). Metallurgical Industry Press, Beijing, China.
- [26] Melo F., Vivanco F., Fuentes C., Apablaza V., 2007. On drawbody shapes: from Bergmark-Ross to kinematic models. Int. J. Rock Mech. Min. Sci. 44, 1, 77-86.
- [27] Minchinton A., Dare-Bryan P., 2005. The application of computer modelling for blasting and flow in sublevel caving operations. In: Proceedings of the 9th AusIMM Underground Operators’ Conference, Perth, Australia, 7-9 March, 65-73.
- [28] Mullins W.W., 1972. Stochastic theory of particle flow under gravity. J. Appl. Phys. 43, 2, 665-678.
- [29] Mullins W.W., 1974. Nonsteady state particle flow under gravity-an extension of the stochastic theory. J. Appl. Physics. 41, 4, 867-872.
- [30] Pierce M., Cundall P., Van Hout G., Lorig L., 2002. PFC3D modeling of caved rock under draw. In: Proceedings of the 1st International PFC Symposium, Gelsenkirchen, Germany, 6-8 November, 211-217.
- [31] Pierce M., 2010. A model for gravity flow of fragmented rock in block caving mines. Block Caving 54, 2, 930-937.
- [32] Power G., 2004. Modelling granular flow in caving mines: large scale physical models and full scale experiments. Dissertation, University of Queensland.
- [33] Qiao D.P., 2006. Research and application of draw theory. Yunnan Science Press, Kunming.
- [34] Ren F.Y., 1992. Draw theory and its application based on stochastic theory. Dissertation, Northeastern University.
- [35] Ren F.Y., 1994. The research and application of the stochastic medium theory for ore drawing. Metallurgical Industry Press, Beijing.
- [36] Ren F.Y., Liu Y, Cao J.L., He R.X., Fu Y., Zhou Y.J., Liu H., 2018. Prediction of the caved rock zones’ scope induced by caving mining method [J]. PLoS ONE, 13 (8): e0202221.
- [37] Rustan A., 2000. Gravity flow of broken rock-what is known and unknown. In: Proceedings of MassMin. Brisbane, 29 October-2 November, 557-567.
- [38] Stazhevskii S.B., 1996. Features of flow of broken rock in extraction of ores with sublevel caving. J. Min. Sci. 32, 5, 403-416.
- [39] Sun H., Jin A.B., Gao Y.T., Zhou Y., Yang Z.W., 2015. Flow characteristic of caved ore and rock under complex boundary condition. J. Cent. South. Univ. (Sci. Technol.) 46, 10, 3782-3788.
- [40] Tao G.Q., Yang S.J., Ren F.Y., 2009. Experimental research on granular flow characters of caved ore and rock. Rock Soil Mech. 30, 10, 2950-2954.
- [41] Trueman R., Castro R., Halim A., 2008. Study of multiple draw-zone interaction in block caving mines by means of a large 3D physical model. Int. J. Rock Mech. Min. Sci. 45, 7, 1044-1051.
- [42] Wang C., 2015. Study on stope structure parameters of inclined and steeply inclined medium thick ore bodies in Jianshan mining area. Dissertation, Kunming University of Science and Technology (in Chinese).
- [43] Watson G.R., 1993. Flow patterns in flat bottomed silos. Dissertation, University of Edinburgh.
- [44] Xu S., Suorineni F.T., An L., Li Y.H., 2017. A study of gravity flow principles of sublevel caving method in dipping narrow veins. Granular Matter 19, 4, 82.
- [45] Zhang X.F., Tao G.Q., Zhu Z.H., 2018. Laboratory study of the influence of dip and ore width on gravity flow during longitudinal sublevel caving. Int. J. Rock Mech. Min. Sci. 103, 179-185.
- [46] Zhou Z.H., 2006. Research on low-dilution and loss sublevel caving of inclined medium-thick orebody in Xiadian gold mine. Dissertation, Northeastern University.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ae8670c-1103-4016-9b37-1cd5926969a5