PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal stopping model with unknown transition probabilities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article concerns the optimal stopping problem for a discrete-time Markov chain with observable states, but with unknown transition probabilities. A stopping policy is graded via the expected total-cost criterion resulting from the non-negative running and terminal costs. The Dynamic Programming method, combined with the Bayesian approach, is developed. A series of explicitly solved meaningful examples illustrates all the theoretical issues.
Rocznik
Strony
593--612
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
  • Department of Mathematics, Faculty of Science Kanagawa University 2946 Tsuchiya, Hiratsuka-shi, Kanagawa 259-1293, Japan
  • Department of Mathematical Sciences University of Liverpool L69 7ZL, Liverpool, United Kingdom
Bibliografia
  • 1. Bäuerle, N. and Rieder, U. (2011) Markov Decision Processes with Applications to Finance. Springer-Verlag, Berlin.
  • 2. Bertsekas, D.P. and Shreve, S.E. (1978) Stochastic Optimal Control. Academic Press, New York.
  • 3. Dufour, F. and Piunovskiy, A. (2010) Multiobjective stopping problem for discrete-time Markov processes: the convex analytic approach. Journal of Applied Probability 47: 947–966.
  • 4. Dynkin, E.B. and Yushkevich A.A. (1979) Controlled Markov Processes and their Applications. Springer-Verlag, New York - Berlin.
  • 5. Easley, D. and Kiefer, N.M. (1988) Controlling a stochastic process with unknown parameters. Econometrica 56: 1045–1064.
  • 6. Ekstrőm, E. and Lu, B. (2011) Optimal selling of an asset under incomplete information. Int. J. Stoch. Anal. Art. ID 543590, 17 ,2090–3340.
  • 7. Ferguson, T.S. (1967) Mathematical Statistics. Academic Press, New York - London.
  • 8. González-Trejo, J.I., Hernández-Lerma, O. and Hoyos-Reyes, L.F. (2003) Minimax control of discrete–time stochastic systems. SIAM J. Control Optim 41: 1626–1659.
  • 9. DeGroot, M.H. (1970) Optimal Statistical Decisions. McGraw-Hill Book Co., New York.
  • 10. van Hee, K.M. (1978) Bayesian Control of Markov Chains. Mathematical Centre Tracts, No. 95. Mathematisch Centrum, Amsterdam.
  • 11. Hernández-Lerma, O. and Marcus, S.I. (1985) Adaptive control of discounted Markov decision chains. Journal of Optimization Theory and Applications 46: 227–235.
  • 12. Hernández-Lerma, O. (1989) Adaptive Markov Control Processes, volume 79 of Applied Mathematical Sciences. Springer-Verlag, New York.
  • 13. Hernández-Lerma, O. and Lasserre, J.B. (1996) Discrete-time Markov Control Processes. Springer, New York.
  • 14. Hordijk, A. (1974) Dynamic Programming and Markov Potential Theory. Mathematical Centre Tracts, No. 51. Mathematisch Centrum, Amsterdam.
  • 15. Horiguchi, M. (2001a) Markov decision processes with a stopping time constraint. Mathematical Methods of Operations Research 53: 279–295.
  • 16. Horiguchi, M. (2001b) Stopped Markov decision processes with multiple constraints. Mathematical Methods of Operations Research 54: 455–469.
  • 17. Kurano, M. (1972) Discrete-time Markovian decision processes with an unknown parameter. Average return criterion. Journal of the Operations Research Society of Japan 15: 67–76.
  • 18. Kurano, M. (1983) Adaptive policies in Markov decision processes with uncertain transition matrices. Journal of Information & Optimization Sciences 4: 21–40.
  • 19. Mandl, P. (1974) Estimation and control in Markov chains. Advances in Applied Probability 6: 40–60.
  • 20. Martin, J.J. (1967) Bayesian Decision Problems and Markov Chains. Publications in Operations Research, No. 13. John Wiley & Sons Inc., New York.
  • 21. Piunovskiy, A. B. (2006) Dynamic programming in constrained Markov decision processes. Control and Cybernetics 35: 645–660.
  • 22. Puterman, M. (1994) Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York.
  • 23. Raiffa, H and Schlaifer, R. (1961) Applied Statistical Decision Theory. Studies in Managerial Economics. Division of Research, Graduate School of Business Administration, Harvard University, Boston, Mass.
  • 24. Rieder, U. (1975) Bayesian Dynamic Programming. Advances in Applied Probability 7: 330–348.
  • 25. Ross, S.M. (1970) Applied Probability Models with Optimization Applications. Holden-Day, San Francisco.
  • 26. Ross, S.M. (1983) Introduction to Stochastic Dynamic Programming. Academic Press, San Diego, CA.
  • 27. Stadje, W. (1997) An optimal stopping problem with two levels of incomlete information. Mathem. Methods of Oper. Research 45: 119–131.
  • 28. Wald, A. (1950) Statistical Decision Functions. John Wiley & Sons Inc., New York.
  • 29. Wang, X. and Yi, Y. (2009) An optimal investment and consumption model with stochastic returns. Applied Stoch. Models in Business and Industry 25: 45–55.
  • 30. White, D.J. (1969) Dynamic Programming. Mathematical Economic Texts,1. Oliver&Boyd, Edinburgh–London.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ae3e047-37f5-49c5-b1cc-bb41fa66a012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.