PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Experimental Assessment of the Impact of Sonication Parameters on Necrotic Lesions Induced in Tissues by HIFU Ablative Device for Preclinical Studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have designed and built ultrasound imaging-guided HIFU ablative device for preclinical studies on small animals. Before this device is used to treat animals, ex vivo tissue studies were necessary to determine the location and extent of necrotic lesions created inside tissue samples by HIFU beams depending on their acoustic properties. This will allow to plan the beam movement trajectory and the distance and time intervals between exposures leading to necrosis covering the entire treated volume without damaging the surrounding tissues. This is crucial for therapy safety. The objective of this study was to assess the impact of sonication parameters on the size of necrotic lesions formed by HIFU beams generated by 64-mm bowl-shaped transducer used, operating at 1.08 MHz or 3.21 MHz. Multiple necrotic lesions were created in pork loin samples at 12.6-mm depth below tissue surface during 3-s exposure to HIFU beams with fixed duty-cycle and varied pulse-duration or fixed pulse-duration and varied duty-cycle, propagated in two-layer media: water-tissue. After exposures, the necrotic lesions were visualized using magnetic resonance imaging and optical imaging (photos) after sectioning the samples. Quantitative analysis of the obtained results allowed to select the optimal sonication and beam movement parameters to suport planning of effective therapy.
Rocznik
Strony
341--352
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  • Department of Theory of Continuous Media and Nanostructures, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  • Department of Theory of Continuous Media and Nanostructures, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
  • Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Department of Ultrasound, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • 1. Chauhan S. (2008), FUSBOTs: image-guided robotic systems for Focused Ultrasound Surgery, Medical Robotics, Vanja Bozovic, I-Tech Education and Publishing, Vienna, Austria.
  • 2. Choi J. W. et al. (2014), Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs, Ultrasonography, 33 (3): 191-199, doi: 10.14366/usg.14008.
  • 3. Duck F. A. (1990), Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press, London.
  • 4. Ebbini E. S., ter Haar G. (2015), Ultrasound-guided therapeutic focused ultrasound: current status and future directions, International Journal of Hyperthermia, 31 (2): 77-89, doi: 10.3109/02656736.2014.995238.
  • 5. Ellens N. et al. (2015), The targeting accuracy of a preclinical MRI-guided focused ultrasound system, Medical Physics, 42 (1): 430-439, doi: 10.1118/1.4903950.
  • 6. Fukuda H. et al. (2011), Hyper-echo in ultrasound images during high-intensity focused ultrasound ablation for hepatocellular carcinomas, European Journal of Radiology, 80 (3): e571-e575, doi: 10.1016/j.ejrad.2011.09.001.
  • 7. Fura Ł., Kujawska T. (2019), Selection of exposure parameters for a HIFU ablation system using an array of thermocouples and numerical simulations, Archives of Acoustics, 44 (2): 349-355, doi: 10.24425/aoa.2019.128498.
  • 8. Guillaumier S. et al. (2018), A multicentre study of 5-year outcomes following focal therapy in treating clinically significant nonmetastatic prostate cancer, European Urology, 74 (4): 422-429, doi: 10.1016/j.eururo.2018.06.006.
  • 9. ter Haar G. (2007), Therapeutic applications of ultrasound, Progress in Biophysics & Molecular Biology, 93 (1-3): 111-129, doi: 10.1016/j.pbiomolbio.2006.07.005.
  • 10. Hand J. W., Shaw A., Sadhoo N., Rajaqopal S., Dickinson R. J., Gavrilov L. R. (2009), A random phased array device for delivery of high intensity focused ultrasound, Physics in Medicine & Biology, 54 (19): 5675-5693, doi: 10.1088/0031-9155/54/19/002.
  • 11. Koch T., Lakshmanan S., Brand S., Wicke M., Raum K., Moerlein D. (2011), Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: I. Muscle, Meat Science, 88 (1): 51-58, doi: 10.1016/j.meatsci.2010.12.002.
  • 12. Kujawska T., Secomski W., Byra M., Postema M., Nowicki A. (2017), Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals, Ultrasonics, 76: 92-98, doi: 10.1016/j.ultras.2016.12.008.
  • 13. Law W. K., Frizzell L. A., Dunn F. (1985), Determination of the nonlinearity parameter B/A of biological media, Ultrasound in Medicine & Biology, 11 (2): 307-318, doi: 10.1016/0301-5629(85)90130-9.
  • 14. Leslie T. et al. (2012), High-intensity focused ultrasound treatment of liver tumours: post-treatment MRI correlates well with intra-operative estimates of treatment volume, The British Journal of Radiology, 85 (1018): 1363-1370, doi: 10.1259/bjr/56737365.
  • 15. Li K., Bai J. F., Chen Y. Z., Ji X. (2018), Experimental evaluation of targeting accuracy of an ultrasound-guided phased-array high-intensity focused ultrasound system, Applied Acoustics, 141: 19-25, doi: 10.1016/j.apacoust.2018.06.011.
  • 16. Li S., Wu P. H. (2013), Magnetic resonance image-guided versus ultrasound guided high-intensity focused ultrasound in the treatment of breast cancer, Chinese Journal of Cancer, 32 (8): 441-452, doi: 10.5732/cjc.012.10104.
  • 17. Masamune K., Kurima I., Kuwana K., Yamashita H., Chiba T., Dohi T. (2013), HIFU positioning robot for less-invasive fetal treatment, Procedia CIRP, 5: 286-289, doi: 10.1016/j.procir.2013.01.056.
  • 18. Melodelima D., N’Djin W. A., Parmentier H., Chesnais S., Rivoire M., Chapelon J. Y. (2009), Thermal ablation by high-intensity-focused ultrasound using a toroid transducer increases the coagulated volume. Results of animal experiments, Ultrasound in Medicine & Biology, 35 (3): 425-435, doi: 10.1016/j.ultrasmedbio.2008.09.020.
  • 19. Nassiri D. K., Nicholas D., Hill C. R. (1979), Attenuation of ultrasound in skeletal muscle, Ultrasonics, 17 (5): 230-232, doi: 10.1016/0041-624x(79)90054-4.
  • 20. Orsi F., Arnone P., Chen W., Zhang L. (2010), High intensity focused ultrasound ablation: a new therapeutic option for solid tumors, Journal of Cancer Research and Therapeutics, 6 (4): 414-420, doi: 10.4103/0973-1482.77064.
  • 21. Schneider C. A., Rasband W. S., Eliceiri K. W. (2012), NIH Image to ImageJ: 25 years of image analysis, Nature Methods, 9 (7): 671-675, doi: 10.1038/nmeth.2089.
  • 22. Shui L. et al. (2015), High-intensity focused ultrasound (HIFU) for adenomyosis: two-year follow-up results, Ultrasonics Sonochemistry, 27: 677-681, doi: 10.1016/j.ultsonch.2015.05.024.
  • 23. Treeby B. E., Jaros J., Rendell A. P., Cox B. T. (2012), Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudo-spectral method, The Journal of the Acoustical Society of America, 131 (6): 4324-4336, doi: 10.1121/1.4712021.
  • 24. Veereman G. et al. (2015), Systematic review of the efficacy and safety of high-intensity focused ultrasound for localized prostate cancer, European Urology Focus, 1 (2): 158-170, doi: 10.1016/j.euf.2015.04.006.
  • 25. Wang Y., Wang Z. B., Xu Y. H. (2018), Efficacy, efficiency, and safety of magnetic resonance-guided high-intensity focused ultrasound for ablation of uterine fibroids: comparison with ultrasound-guided method, Korean Journal of Radiology, 19 (4): 724-732, doi: 10.3348/kjr.2018.19.4.724.
  • 26. Wójcik J., Nowicki A., Lewin P. A., Bloomfield P. E., Kujawska T., Filipczynski L. (2006), Wave envelopes method for description of nonlinear acoustic wave propagation, Ultrasonics, 44: 310-329, doi: 10.1016/j.ultras.2006.04.001.
  • 27. Yu T., Xu C. (2008), Hyperecho as the indicator of tissue necrosis during microbubble-assisted high intensity focused ultrasound sensitivity, specificity and predictive value, Ultrasound in Medicine & Biology, 34 (8): 1343-1347, doi: 10.1016/j.ultrasmedbio.2008.01.012.
  • 28. Zavaglia C., Mancuso A., Foschi A., Rampoldi A. (2013), High-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma: is it time to abandon standard ablative percutaneous treatments?, Hepatobiliary Surgery and Nutrition, 2 (4): 184-187, doi: 10.3978/j.issn.2304-3881.2013.05.02.
  • 29. Zhang L., Rao F., Setzen R. (2017), High intensity focused ultrasound for the treatment of adenomyosis: selection criteria, efficacy, safety and fertility, Acta Obstetricia et Gynecologica Scandinavica, 96 (6): 707-714, doi: 10.1111/aogs.13159.
  • 30. Zhang X., Li K., Xie B., He M., He J., Zhang L. (2014), Effective ablation therapy of adenomyosis with ultrasound-guided high-intensity focused ultrasound, International Journal of Gynecology & Obstetrics, 124 (3): 207-211, doi: 10.1016/j.ijgo.2013.08.022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0adc2398-1708-4bea-bfe8-7a9067465e92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.