Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The safety of workers, the environment and the communities surrounding a mine are primary concerns for the mining industry. Therefore, implementing a blast-induced ground vibration monitoring system to monitor the vibrations emitted due to blasting operations is a logical approach that addresses these concerns. Empirical and soft computing models have been proposed to estimate blast-induced ground vibrations. This paper tests the efficiency of the Wavelet Neural Network (WNN). The motive is to ascertain whether the WNN can be used as an alternative to other widely used techniques. For the purpose of comparison, four empirical techniques (the Indian Standard, the United State Bureau of Mines, Ambrasey-Hendron, and Langefors and Kilhstrom) and four standard artificial neural networks of backpropagation (BPNN), radial basis (RBFNN), generalised regression (GRNN) and the group method of data handling (GMDH) were employed. According to the results obtained from the testing dataset, the WNN with a single hidden layer and three wavelons produced highly satisfactory and comparable results to the benchmark methods of BPNN and RBFNN. This was revealed in the statistical results where the tested WNN had minor deviations of approximately 0.0024 mm/s, 0.0035 mm/s, 0.0043 mm/s, 0.0099 and 0.0168 from the best performing model of BPNN when statistical indicators of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error (RRMSE), Correlation Coefficient (R) and Coefficient of determination (R2) were considered.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
287--296
Opis fizyczny
Bibliogr. 80 poz.
Twórcy
autor
- Mining Engineering Department, Faculty of Mineral Resources Technology, University of Mines and Technology, Tarkwa, Western Region, Ghana
autor
- Mining Engineering Department, Faculty of Mineral Resources Technology, University of Mines and Technology, Tarkwa, Western Region, Ghana
autor
- Mining Engineering Department, Faculty of Mineral Resources Technology, University of Mines and Technology, Tarkwa, Western Region, Ghana
Bibliografia
- 1. Alexandridis, A. K., & Zapranis, A. D. (2013). Wavelet neural networks: A practical guide. Neural Networks, 42, 1-27.
- 2. Álvarez-Vigil, A. E., González-Nicieza, C., López Gayarre, F., & Álvarez-Fernández, M. I. (2012). Predicting blasting propagation velocity and vibration frequency using artificial neural networks. International Journal of Rock Mechanics and Mining Sciences, 55, 108-116.
- 3. Ambraseys, N. R., & Hendron, A. J. (1968). Dynamic behavior of rock masses. In K. Stagg, & J. Wiley (Eds.). Rock mechanics in engineering practices (pp. 203-207). London: Wiley.
- 4. Amegbey, N., & Afum, B. O. (2015). Blast impact prediction studies at Ghana manganese company (GMC) Ltd, Nsuta, Ghana. Ghana Mining Journal, 15(1), 73-77.
- 5. Amnieh, B. H., Mozdianfard, M. R., & Siamaki, A. (2010). Predicting of blasting vibrations in Sarcheshmeh copper mine by neural network. Safety Science, 38, 319-325.
- 6. Armaghani, D. J., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences, 7(12), 5383-5396.
- 7. Armaghani, D. J., Hajihassani, M., Sohaei, H., Mohamad, E. T., Marto, A., Motaghedi, H., et al. (2015a). Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arabian Journal of Geosciences, 8(12), 10937-10950.
- 8. Armaghani, D. J., Hasanipanah, M., Amnieh, H. B., & Mohamad, E. T. (2018). Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Computing & Applications, 29(9), 457-465.
- 9. Armaghani, D. J., Mohamad, E. T., Hajihassani, M., Abad, S. A. N. K., Marto, A., & Moghaddam, M. R. (2016). Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods. Engineering with Computers, 32(1), 109-121.
- 10. Armaghani, D. J., Momeni, E., Abad, S. V. A. N. K., & Khandelwal, M. (2015b). Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environmental Earth Sciences, 74(4), 2845-2860.
- 11. Armstrong, L. W. (2001). Evaluation of parameters effecting blast induced vibrations Doctoral dissertation. New South Wales: University of Wollongong.
- 12. Assaleh, K., Shanableh, T., & Kheil, Y. A. (2013). Group method of data handling for modeling magnetorheological dampers. Intelligent Control and Automation, 4(1), 70-79.
- 13. Davies, B., Farmer, I. W., & Attewell, P. B. (1964). Ground vibration from shallow subsurface blasts. Engineer, 217, 553-559.
- 14. Dehghani, H., & Ataee-pour, M. (2011). Development of a model to predict peak particle velocity in a blasting operation. International Journal of Rock Mechanics and Mining Sciences, 48(1), 51-58.
- 15. Dong-xiao, N., Da, L., & Mian, X. (2008). Electricity price forecasting using generalized regression neural network based on principal components analysis. Journal of Central South University of Technology, 15(2), 316-320.
- 16. Dorofki, M., Elshafie, A. H., Jaafar, O., Karim, O. A., & Mastura, S. (2012). Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data. 2012 international conference on environment, energy and biotechnology: Vol. 33, (pp. 39-44). Singapore: IACSIT Press.
- 17. Duvall, W. I., & Petkof, B. (1959). Spherical propagation of explosion generated strain pulses in rock. Washington, DC: Bureau of Mines.
- 18. Faradonbeh, R. S., Armaghani, D. J., Majid, M. A., Tahir, M. M., Murlidhar, B. R., Monjezi, M., et al. (2016a). Prediction of ground vibration due to quarry blasting based on gene expression programming: A new model for peak particle velocity prediction. International journal of Environmental Science and Technology, 13(6), 1453-1464.
- 19. Faradonbeh, R. S., Armaghani, D. J., Monjezi, M., & Mohamad, E. T. (2016b). Genetic programming and gene expression programming for flyrock assessment due to mine blasting. International Journal of Rock Mechanics and Mining Sciences, 88, 254-264.
- 20. Fengqi, H., & Lijuan, S. (2015). Wavelet neural network in the design and application of hydrological forecast. 2015 international conference on intelligent transportation, big data and smart city (pp. 1004-1006). Halong Bay, Vietnam: IEEE.
- 21. Ghasemi, E., Ataei, M., & Hashemolhosseini, H. (2013). Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining. Journal of Vibration and Control, 19(5), 755-770.
- 22. Ghasemi, M. R., & Ghorbani, A. (2007). Application of wavelet neural networks in optimization of skeletal buildings under frequency constraints. International Journal of Intelligent Technology, 2(4), 223-231.
- 23. Ghoraba, S., Monjezi, M., Talebi, N., Armaghani, D. J., & Moghaddam, M. R. (2016). Estimation of ground vibration produced by blasting operations through intelligent and empirical models. Environmental Earth Sciences, 75(15), 1137.
- 24. Ghosh, A., & Daemen, J. K. (1983). A simple new blast vibration predictor (based on wave propagation laws). The 24th US symposium on rock mechanics (pp. 151-161). Texas, USA: American Rock Mechanics Association.
- 25. Görgülü, K., Arpaz, E., Demirci, A., Koçaslan, A., Dilmaç, M. K., & Yüksek, A. G. (2013). Investigation of blast-induced ground vibrations in the Tülü Boron open pit mine. Bulletin of Engineering Geology and the Environment, 72(3-4), 555-564.
- 26. Görgülü, K., Arpaz, E., Uysa, Ö., Durutürk, A. G., Yüksek, A. G., Koçaslan, A., et al. (2015). Investigation of the effects of blasting design parameters and rock properties on blastinduced ground vibrations. Arabian Journal of Geosciences, 8(6), 4269-4278.
- 27. Gupta, R. N., Roy, P. P., & Singh, B. (1987). On a blast induced blast vibration predictor for efficient blasting. Proceedings of the 22nd international conference on safety in mines research Institute (pp. 1015-1021). Beijing, China: China Coal Industry Publishing House.
- 28. Hajihassani, M., Armaghani, D. J., Marto, A., & Mohamad, E. T. (2015). Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment, 74(3), 873-886.
- 29. Hasanipanah, M., Armaghani, D. J., Amnieh, H. B., Koopialipoor, M., & Arab, H. (2018). A risk-based technique to analyze flyrock results through rock engineering system. Geotechnical & Geological Engineering, 36(4), 2247-2260.
- 30. Hasanipanah, M., Faradonbeh, R. S., Amnieh, H. B., Armaghani, D. J., & Monjezi, M. (2017a). Forecasting blast-induced ground vibration developing a CART model. Engineering with Computers, 33(2), 307-316.
- 31. Hasanipanah, M., Golzar, S. B., Larki, I. A., Maryaki, M. Y., & Ghahremanians, T. (2017b). Estimation of blast-induced ground vibration through a soft computing framework. Engineering with Computers, 33(4), 951-959.
- 32. Hasanipanah, M., Monjezi, M., Shahnazar, A., Armaghani, D. J., & Farazmand, A. (2015). Feasibility of indirect determination of blast induced ground vibration based on support vector machine. Measurement, 75, 289-297.
- 33. Hasanipanah, M., Naderi, R., Kashir, J., Noorani, S. A., & Qaleh, A. Z. A. (2017c). Prediction of blast-produced ground vibration using particle swarm optimization. Engineering with Computers, 33(2), 173-179.
- 34. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed forward networks are universal approximators. Neural Networks, 2(5), 359-366.
- 35. Hung, S. L., Huang, C. S., & Wen, C. M. (2004). Using wavelet neural network for the identification of a building structure from experimental data. 13th World Conference on Earthquake Engineering (pp. 1-6). Vancouver, BC, Canada.
- 36. Indian Standard Institute (1973). Criteria for safety and design of structures subject to underground blasts. New Delhi, India: Bureau of Indian Standards.
- 37. Iramina, W. S., Sansone, E. C., Wichers, M., Wahyudi, S., Eston, S. M., Shimada, H., et al. (2018). Comparing blast-induced ground vibration models using ANN and empirical geomechanical relationships. REM-International Engineering Journal, 71(1), 89-95.
- 38. Ivakhnenko, A. G. (1970). Heuristic self-organization in problems of engineering cybernetics. Automatica, 6(2), 207-219.
- 39. Jiang, X., & Adeli, H. (2005). Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering, 131(10), 771-779.
- 40. Khandelwal, M., & Singh, T. N. (2006). Prediction of blast induced ground vibrations and frequency in opencast mine: A neural network approach. Journal of Sound and Vibration, 289(4-5), 711-725.
- 41. Khandelwal, M., & Singh, T. N. (2007). Evaluation of blast-induced ground vibration predictors. Soil Dynamics and Earthquake Engineering, 27(2), 116-125.
- 42. Khandelwal, M., & Singh, T. N. (2009). Prediction of blast-induced ground vibration using artificial neural network. International Journal of Rock Mechanics and Mining Sciences, 46(7), 1214-1222.
- 43. Langefors, U., & Kihlstrom, B. (1963). The modern technique of rock blasting. New York: John Wiley and Sons.
- 44. Lapčević, R., Kostić, S., Pantović, R., & Vasović, N. (2014). Prediction of blast-induced ground motion in a copper mine. International Journal of Rock Mechanics and Mining Sciences, 69, 19-25.
- 45. Mi, X., Ren, H., Ouyang, Z., Wei, W., & Ma, K. (2005). The use of the Mexican Hat and the Morlet wavelets for detection of ecological patterns. Plant Ecology, 179(1), 1-19.
- 46. Mohamadnejad, M., Gholami, R., & Ataei, M. (2012). Comparison of intelligence science techniques and empirical methods for prediction of blasting vibrations. Tunnelling and Underground Space Technology, 28, 238-244.
- 47. Mohamad, E. T., Noorani, S. A., Armaghani, D. J., & Saad, R. (2012). Simulation of blasting induced ground vibration by using artificial neural network. The Electronic Journal of Geotechnical Engineering, 17, 2571-2584.
- 48. Mokfi, T., Shahnazar, A., Bakhshayeshi, I., Derakhsh, A. M., & Tabrizi, O. (2018). Proposing of a new soft computing-based model to predict peak particle velocity induced by blasting. Engineering with Computers, 34(4), 881-888.
- 49. Monjezi, M., Ahmadi, M., Sheikhan, M., Bahrami, A., & Salimi, A. R. (2010). Predicting blast-induced ground vibration using various types of neural networks. Soil Dynamics and Earthquake Engineering, 30(11), 1233-1236.
- 50. Monjezi, M., Baghestani, M., Faradonbeh, R. S., Saghand, M. P., & Armaghani, D. J. (2016). Modification and prediction of blast-induced ground vibrations based on both empirical and computational techniques. Engineering with Computers, 32(4), 717-728.
- 51. Monjezi, M., Ghafurikalajahi, M., & Bahrami, A. (2011). Prediction of blast-induced ground vibration using artificial neural networks. Tunnelling and Underground Space Technology, 26(1), 46-50.
- 52. Monjezi, M., Hasanipanah, M., & Khandelwal, M. (2013). Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing & Applications, 22(7-8), 1637-1643.
- 53. Okkan, U. (2012). Wavelet neural network model for reservoir inflow prediction. Scientia Iranica, 19(6), 1445-1455.
- 54. Parida, A., & Mishra, M. K. (2015). Blast vibration analysis by different predictor approaches- a comparison. Procedia Earth and Planetary Science, 11, 337-345.
- 55. Poulos, M., Belesiotis, V. S., & Alexandris, N. (2010). A classroom observation model fitted to stochastic and probabilistic decision systems. IFIP international conference on artificial intelligence applications and innovations (pp. 30-36). Berlin, Heidelberg: Springer.
- 56. Ragam, P., & Nimaje, D. S. (2018a). Evaluation and prediction of blast-induced peak particle velocity using artificial neural network: A case study. Noise & Vibration Worldwide, 49(3), 111-119.
- 57. Ragam, P., & Nimaje, D. S. (2018b). Estimation of ambiguous blast-induced ground vibration using intelligent models: A case study. Noise & Vibration Worldwide, 49(4), 147-157.
- 58. Ragam, P., & Nimaje, D. S. (2018c). Assessment of blast-induced ground vibration using different predictor approaches- a comparison. Chemical Engineering Transactions, 66, 487-492.
- 59. Rai, R., & Singh, T. N. (2004). A new predictor for ground vibration prediction and its comparison with other predictors. Indian Journal of Engineering and Materials Sciences, 11, 178-184.
- 60. Ramana, R. V., Krishna, B., Kumar, S. R., & Pandey, N. G. (2013). Monthly rainfall prediction using wavelet neural network analysis. Water Resources Management, 27(10), 3697-3711.
- 61. Roy, P. P. (1991). Vibration control in an opencast mine based on improved blast vibration predictors. Mining Science and Technology, 12(2), 157-165.
- 62. Rustan, A., Cunningham, C., Fourney, W., Simha, K. R. Y., & Spathis, A. T. (2010). Mining and rock construction technology desk reference: Rock mechanics, drilling & blasting. Netherlands: CRC Press/Balkema.
- 63. Saadat, M., Khandelwal, M., & Monjezi, M. (2014). An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran. Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 67-76.
- 64. Shahnazar, A., Rad, H. N., Hasanipanah, M., Tahir, M. M., Armaghani, D. J., & Ghoroqi, M. (2017). A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model. Environmental Earth Sciences, 76(15), 527.
- 65. Shahri, A. A., & Asheghi, A. (2018). Optimized developed artificial neural network-based models to predict the blast-induced ground vibration. Innovative Infrastructure Solutions, 3, 1-10.
- 66. Shen, J., & Li, W. (2013). Sensitivity analysis of wavelet neural network model for shortterm traffic volume prediction. Journal of Applied Mathematics, 2013, 1-10.
- 67. Shin, M., & Park, C. (2000). A radial basis function approach to pattern recognition and its applications. ETRI Journal, 22(2), 1-10.
- 68. Silva-Castro, J. J. (2012). Blast vibration modeling using improved signature hole technique for bench blastDoctoral dissertation. Lexington: University of Kentucky.
- 69. Singla, P., Subbarao, K., & Junkins, J. L. (2007). Direction-dependent learning approach for radial basis function networks. IEEE Transactions on Neural Networks, 18(1), 203-222.
- 70. Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2(6), 568-576.
- 71. Stojadinovic, S., Zikic, M., & Pantovic, R. (2011). A new approach to blasting induced ground vibrations and damage to structures. Acta Montanistica Slovaca, 16(4), 344-354.
- 72. Taheri, K., Hasanipanah, M., Golzar, S. B., & Majid, M. Z. A. (2017). A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration. Engineering with Computers, 33(3), 689-700.
- 73. Tiile, R. N. (2016). Artificial neural network approach to predict blast-induced ground vibration, airblast and rock fragmentationMasters dissertation. Rolla: Missouri University of Science and Technology.
- 74. Tripathy, G. R., Shirke, R. R., & Kudale, M. D. (2016). Safety of engineered structures against blast vibrations: A case study. Journal of Rock Mechanics and Geotechnical Engineering, 8(2), 248-255.
- 75. Wang, W., & Ding, J. (2003). Wavelet network model and its application to the prediction of hydrology. Nature and Science, 1(1), 67-71.
- 76. Wang, G., Guo, L., & Duan, H. (2013). Wavelet neural network using multiple wavelet functions in target threat assessment. Science World Journal, 2013, 1-7.
- 77. Xue, X., & Yang, X. (2014). Predicting blast-induced ground vibration using general regression neural network. Journal of Vibration and Control, 20(10), 1512-1519.
- 78. Yue, Q., & Shao-hong, L. (2014). Wavelet neural network optimization algorithm based landslide displacement forecast and prediction. Electronic Journal of Geotechnical Engineering, 19, 17781-17787.
- 79. Zhang, Q., & Benvenite, A. (1992). Wavelet networks. IEEE Transactions on Neural Networks, 3(6), 889-898.
- 80. Zhou, G., Wang, C., Wang, S., & Yin, X. (2016). Gray wavelet neural network and its application in mining waste prediction. 2016 international conference on progress in informatics and computing (PIC) (pp. 164-168). Shanghai, China: IEEE.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ad58349-333d-4b8b-9b21-cb95cbc4be71