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A B S T R A C T

The safety of workers, the environment and the communities surrounding a mine are primary concerns for the
mining industry. Therefore, implementing a blast-induced ground vibration monitoring system to monitor the
vibrations emitted due to blasting operations is a logical approach that addresses these concerns. Empirical and
soft computing models have been proposed to estimate blast-induced ground vibrations. This paper tests the
efficiency of the Wavelet Neural Network (WNN). The motive is to ascertain whether the WNN can be used as an
alternative to other widely used techniques. For the purpose of comparison, four empirical techniques (the
Indian Standard, the United State Bureau of Mines, Ambrasey-Hendron, and Langefors and Kilhstrom) and four
standard artificial neural networks of backpropagation (BPNN), radial basis (RBFNN), generalised regression
(GRNN) and the group method of data handling (GMDH) were employed. According to the results obtained from
the testing dataset, the WNN with a single hidden layer and three wavelons produced highly satisfactory and
comparable results to the benchmark methods of BPNN and RBFNN. This was revealed in the statistical results
where the tested WNN had minor deviations of approximately 0.0024 mm/s, 0.0035 mm/s, 0.0043 mm/s,
0.0099 and 0.0168 from the best performing model of BPNN when statistical indicators of Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), Relative Root Mean Square Error (RRMSE), Correlation Coefficient (R)
and Coefficient of determination (R2) were considered.

1. Introduction

Mining, which is the extraction of any naturally occurring mineral
substance: solid, liquid and gas from the earth, has been a human ac-
tivity since pre-historic times. Through mining, all metals needed by
humans have been made available. Mining in its broader sense has been
found to consist of five different stages, namely: prospecting, explora-
tion, development, exploitation and reclamation. The exploitation stage
employs drilling and blasting to break the in-situ rock mass into smaller
fragments so as to be easily loaded and hauled for processing. Blasting,
however, results in many unwanted effects due to the wastage of the
energy produced during the detonation of explosives (Tripathy, Shirke,
& Kudale, 2016). These unwanted effects include: ground vibration, air
overpressure, back-break, over-break, flyrock and air pollution. This
study is focused on ground vibration.

After the initiation of each blast, high pressure gases are created
which crush the adjacent walls of the blast-hole. Compressive and
tensile stress waves are then produced from the blastholes in radial
directions to further break the in-situ rock mass. Some of the high

energy released to fragment the in-situ rock mass propagates through
the ground as seismic waves with varying frequencies. The movement
of these seismic waves through the ground as a result of the detonation
of explosives in a blast-hole is what is referred to as ground vibration.

Ground vibration is characterised by peak particle velocity (PPV)
and usually measured in millimetres per second (mm/s) (Rustan,
Cunningham, Fourney, Simha, & Spathis, 2010). However, ground vi-
bration induced by blasting is of great concern to mining and civil in-
dustries because, when proper caution is not taken, it can adversely
affect the environment when the levels of intensity are high. This may
even lead to the closure of operations. Several pieces of research
(Armstrong, 2001; Stojadinovic, Zikic, & Pantovic, 2011; Silva-Castro,
2012 and references therein) have been conducted to explain this
complex phenomenon and the causative factors that lead to their level
of intensity.

In relation to explaining real life complex situations, scholars over
the years have adapted to the use of mathematical models, which rely
on interrelationship between parameters that have been found to lead
to the occurrence of real-world situations. Thus, in the study of ground
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vibration induced by blasting, many empirical models (e.g. the United
State Bureau of Mines (USBM) model, the Indian Standard model, the
Langefors and Kihlstrom model and the Ghosh and Daemen and
Ambraseys and Hendron model) solely based on distance from the
monitoring station and blasting point, and the maximum charge per
delay have been developed (Rai & Singh, 2004; Langefors & Kihlstrom,
1963; Gupta, Roy, & Singh, 1987; Ghosh & Daemen, 1983; Ambraseys &
Hendron, 1968; Indian Standard Institute, 1973; Roy, 1991; Davies,
Farmer, & Attewell, 1964; Duvall & Petkof, 1959). These techniques are
heavily applied in almost all mining and civil engineering companies in
order to monitor and predict ground vibration induced by blasting.
Their frequent use is due to their simplicity of application. However,
studies such as (Khandelwal & Singh, 2009; Parida & Mishra, 2015;
Ragam & Nimaje, 2018a; Saadat, Khandelwal, & Monjezi, 2014) have
revealed the inability of empirical techniques to predict ground vibra-
tion induced by blasting accurately. Authors, for example, Khandelwal
& Singh, 2009, and Ghasemi, Ataei, and Hashemolhosseini (2013) have
attributed poor performance to their failure to take into account other
effective blasting parameters, such as hole depth, hole diameter,
burden, bench height, stemming length, spacing, total charge, powder
factor, number of holes and rock mass strength that all contribute to the
generation of the ground vibration induced by blasting. Moreover, the
interactions between these effective parameters are very complicated,
therefore, making blast-induced ground vibration a highly complex
phenomenon to model (Dehghani & Ataee-pour, 2011).

These realisations have increased the need for testing new techni-
ques that can provide reliable, efficient and accurate prediction results
to serve the mining and civil engineering industries. This necessity has
led to the application of the Artificial Neural Network (ANN) which has
been found to address the complex nature of ground vibration and
overcome the weaknesses in the empirical techniques, as ANN has the
ability to model complex nonlinear systems. Additionally, due to its
input-output mapping and adaptive capabilities, it can easily learn the
underlying relationship between the many interrelated effective para-
meters and the ground vibration. This makes ANN efficient at pre-
dicting the outputs of new inputs when trained. A review of previous
studies has shown that the Back Propagation Neural Network (BPNN)
has been extensively applied to predict blast-induced ground vibration
(Khandelwal & Singh, 2006; Khandelwal & Singh, 2007; Khandelwal &
Singh, 2009; Amnieh, Mozdianfard, & Siamaki, 2010; Monjezi, Ahmadi,
Sheikhan, Bahrami, & Salimi, 2010; Monjezi, Ghafurikalajahi, &
Bahrami, 2011; Dehghani & Ataee-pour, 2011; Mohamad, Noorani,
Armaghani, & Saad, 2012; Monjezi, Hasanipanah, & Khandelwal, 2013;
Xue & Yang, 2014; Saadat et al., 2014; Álvarez-Vigil, González-Nicieza,
López Gayarre, & Álvarez-Fernández, 2012; Görgülü et al., 2013;
Lapčević, Kostić, Pantović, & Vasović, 2014; Görgülü et al., 2015;
Shahri & Asheghi, 2018; Iramina et al., 2018; Ragam & Nimaje, 2018a).
Only a few studies have been conducted using the radial basis function
neural network (RBFNN) and the generalised regression neural network
(GRNN)for blast-induced ground vibration prediction (Monjezi et al.,
2010; Xue & Yang, 2014; Ragam, & Nimaje, 2018b, 2018c). Moreover,
the Group Method of Data Handling (GMDH) technique which is an
extension of the artificial neural network has only been applied in the
literature by Mokfi, Shahnazar, Bakhshayeshi, I., Derakhsh, and Tabrizi
(2018) to predict blast-induced ground vibration. Other methods that
have been developed by researchers in recent times for the prediction of
ground vibration induced by blasting include: support vector machine
(SVM), adaptive neuro-fuzzy inference systems (ANFIS), classification
and regression tree (CART), rock engineering systems and hybrid in-
telligent models, where metaheuristic algorithms such as gene expres-
sion programming, genetic programming and particle swarm optimi-
sation are used to optimise artificial intelligent methods (Hajihassani,
Armaghani, Marto, & Mohamad, 2015; Armaghani et al., 2015a, 2016;
Hasanipanah, Monjezi, Shahnazar, Armaghani, & Farazmand, 2015;
Armaghani, Momeni, Abad, & Khandelwal, 2015b; Faradonbeh et al.,
2016a; Monjezi, Baghestani, Faradonbeh, Saghand, & Armaghani,

2016; Ghoraba, Monjezi, Talebi, Armaghani, & Moghaddam, 2016;
Faradonbeh, Armaghani, Monjezi, & Mohamad, 2016b; Hasanipanah,
Faradonbeh, Amnieh, Armaghani, & Monjezi, 2017a; Hasanipanah,
Golzar, Larki, Maryaki, & Ghahremanians, 2017b; Hasanipanah,
Naderi, Kashir, Noorani, & Qaleh, 2017c; Shahnazar et al., 2017;
Taheri, Hasanipanah, Golzar, & Majid, 2017; Hasanipanah, Armaghani,
Amnieh, Koopialipoor, & Arab, 2018; Armaghani, Hasanipanah,
Amnieh, & Mohamad, 2018). The conclusions made in these studies
revealed that ANN (BPNN, RBFNN, GRNN and GMDH) and the other
aforementioned soft computing methods can be used to predict ground
vibration induced by blasting accurately.

Despite the widespread use of ANN as presented, BPNN has only
been applied to one mine in Ghana to predict ground vibration induced
by blasting (Tiile, 2016). With the growing popularity and interest in
ANN methods in mining sciences coupled with the advancement of soft
computing techniques, the authors believe that it will be an excellent
opportunity to test new alternative prediction tools. This study there-
fore applied the wavelet neural network (WNN) to ascertain its effi-
ciency as a reliable alternative technique to the widely used ANN
methods. The motivation for applying WNN was based on its global
optimum realisation, higher generalisation performance and good
computational efficiency, as reported in the literature. These char-
acteristics enable WNN to adapt to data sets appropriately. The derived
computational benefits from WNN can be confirmed in a number of
studies found in geosciences (see e.g. Fengqi & Lijuan, 2015; Ghasemi &
Ghorbani, 2007; Hung, Huang, & Wen, 2004; Okkan, 2012; Ramana,
Krishna, Kumar, & Pandey, 2013; Wang & Ding, 2003; Yue & Shao-
hong, 2014; Zhou, Wang, Wang, & Yin, 2016). The accuracy and re-
liability of the WNN approach was compared with the widely used
BPNN, RBFNN, GRNN, GMDH and conventional empirical models of
USBM, Ambrasey-Hendron, Indian Standard and Langefors-Kihlstrom.

The remaining sections of this paper consist of the following: in-
formation about the study site and description of the data are presented
in Section 2. Section 3 contains a concise description of the various
approaches employed in this study. Section 4 contains a description of
the model performance indices used to evaluate the accuracy of the
developed models. Section 5contains the results obtained and the dis-
cussions of this study. The study concludes with Section 6.

2. Description of the study site and dataset

This study was carried out in a manganese open pit mine situated in
Tarkwa, Ghana. The study site lies geographically between longitude 1°
59ʹ W and latitude 5° 16ʹ N of the Wassa West Municipality in the
Western Region of Ghana. The Mine is approximately a 304 km drive
from Accra (Ghana's capital) and approximately a 63 km drive from the
regional capital, Takoradi (Amegbey & Afum, 2015). The location of the
study area is shown in Fig. 1.

The Mine operates three pits, which are: pits E, F and G. Pit G has
been subdivided into G North (GN); G South East (GSE); G South West
(GSW); G Central East (GCE) and G Central West (GCW). It is worth
mentioning that, currently, active mining is taking place in pit G. The
mine is characterised by three main types of rock formations namely:
Metatuffs, Manganiferous horizon and Greenstones. The mine uses
Sandvik Pantera DP1500i drill rigs, Volvo AD35 and O & K excavators,
CAT 777F and Komatsu HD 465 rear dump trucks for drilling, loading
and hauling purposes, respectively. Blasting of the in-situ rock mass is
done through the use of Emulsion RIOMEX 7000 as the main explosive
material. Priming of drilled holes is done using a 500 ms down the hole
detonator and a 250 g Pentolite booster with either a 25 ms or 42 ms
non-electric dual delay detonator. Furthermore, the surface connectors
have delay times of 17, 42 and 67 ms. The Mine applies a nonelectric
blasting system and detonating cord for initiation. A stemming length of
3 m is adopted and a blend of 15 mm and 20 mm sized gravels are used
as stemming material. This is done to ensure proper confinement. The
drilled holes have a diameter of 115 mm, an average depth of 10 m and
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a sub-drill of 1 m. The drill pattern adopted by the Mine is a staggered
pattern with a burden and spacing of 3.5–4 m.

In developing the various prediction models explored in this study, a
dataset consisting of a total of 210 blasts, which was obtained from the
surface mine in Ghana, was used. The dataset consisted of hole depth
(m), maximum instantaneous charge (kg), number of blast holes,
powder factor (kg/m3) and distance from blasting point to the mon-
itoring station(m)as the input parameters and PPV as the output para-
meter for the development of the proposed WNN as well as BPNN,
RBFNN, GRNN, GMDH models. In the selection of the input parameters
for the modelling, consideration was given to the scientific research
works which indicate the influence of these parameters on blast-in-
duced ground vibration (Hasanipanah et al., 2015; Hasanipanah et al.,
2018 and references therein). For the conventional empirical techni-
ques, the distance from the blasting point to the monitoring station (m)
and maximum instantaneous charge (kg) are the required inputs for
determining the model. The statistical ranges of the various input and
output parameters used are outlined in Table 1. It is noteworthy that
the values for hole depth (m), maximum instantaneous charge (kg),
number of blast holes, powder factor (kg/m3) were acquired from the
blasting plans. Global positioning system (GPS) was used to compute
the values for the distance from the blasting point to the monitoring
stations. This was done by recording the coordinates between the
monitoring station and the blasting point for each blast. A 3000 EZ plus
portable seismic monitor that has a geophone was used to observe and
measure the PPV values. The seismic monitor was setup by fixing the
geophone on stable and levelground. It is worth noting that ground

vibration monitoring was performed next to the building closest to the
mining pit in the closest area of settlement.

The entire dataset of 210 blasts was divided into two separate sets
(training and testing). The training data used to build the predictive
model comprised of 130 blast data events. The 80 pieces of blast data
left was then used to test the efficiency of the trained predictive model.
In this study, the most widely and successfully used data division
technique that has been applied throughout blast-induced ground vi-
bration prediction studies known as the hold-out cross-validation was
adopted (Monjezi et al., 2016; Ghoraba et al., 2016; Armaghani et al.,
2016; Faradonbeh et al., 2016b; Hasanipanah et al., 2017a;
Hasanipanah et al., 2017b; Hasanipanah et al., 2017c; Shahnazar et al.,
2017; Taheri et al., 2017; Hasanipanah et al., 2018 and references
therein). In the hold-out cross-validation approach the general rule is
that for soft computing methods to give good predictions the sample
size of the training data must be larger than the testing data and should
represent the entire characteristic features of the dataset. Therefore, to
meet the hold-out cross-validation condition, the training and testing
data must be selected purposively and the training and testing data
points for the modelling must have very closely related statistical
properties that represent the same population. This is necessary because
if the range of testing data is completely outside the training data range,
there is the likelihood of experiencing overfitting. Therefore, the se-
lection of the 130 pieces of data to build the model and the 80 for
testing was based on the aforementioned elaborated principles.

Fig. 1. Location of study area.

Table 1
Statistical description of the dataset.

Parameters Unit Minimum Maximum Average Standard deviation

Number of blast holes - 19 355 122.50 52.37
Maximum instantaneous charge kg 11.60 123.49 90.08 19.54
Distance from blasting point m 573 1500 915.01 234.62
Hole depth m 3.73 12.58 10.45 1.14
Powder factor kg/m3 0.10 0.97 0.69 0.15
Peak Particle Velocity mm/s 0.13 1.65 0.79 0.32
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3. Research methodology

In this section, a brief conceptual introduction of all the models
(BPNN, RBFNN, GRNN, WNN, GMDH and empirical techniques) used in
this study is provided.

3.1. Soft computing techniques

3.1.1. Wavelet neural network
WNN as proposed by Zhang and Benvenite (1992) is a new class of

neural network for solving classification and regression related pro-
blems. Its structure is made up of three layers, these being: input,
hidden and output layer. Its framework was constructed based on
BPNN. However, it differs from the BPNN in that, it uses wavelet
function as the activation function in place of the classic sigmoid or
hyperbolic function (Wang, Guo, & Duan, 2013). The structure of a
WNN with output y xˆ ( ), input vector = … …x x x x x( , , , , , )i m1 2 and n
number of mother wavelets is given in Fig. 2. The received inputs are
sent to the hidden layer by weighted connections.

In the hidden layer, the inputs are processed by a set of wavelet
basis functions created by translating and dilating the mother wavelet
ψ. According to Alexandridis and Zapranis (2013), three mother wa-
velets are usually recommended. These are: Gaussian, Mexican Hat and
the Morlet wavelet. The output of the hidden layer, Ψ u( )a b, is given in
Eq. (1)

∏ ⎜ ⎟= ⎛
⎝

− ⎞
⎠=

Ψ u ψ u b
a

( )a b
i

n
i

i
,

1 (1)

where u (Eq. (2)) is the weighted inputs, a and b are the dilation and
translation parameters of the mother wavelet, ψ respectively

∑=
=

u x w
i

m

i i
1

[1]

(2)

The output of the hidden layer is then multiplied by the connection
weights between the hidden and output layer. This serves as input to
the output layer. The output of the WNN, y xˆ ( ) is given in Eq. (3)

∑=
=

y x w Ψ uˆ ( ) ( )
j

n

j a b
1

[2]
,

(3)

It should be noted that wi
[2], wj

[2], ai and bi are the parameters which
are adjusted during the training phase of the WNN development.
During the model building process (training), each iteration aims to
minimise the error between the actual output f x( ) and predicted output
y xˆ ( ) (Eq. (4)). The training algorithm which is widely employed to
backpropagate in order to minimise error is the backpropagation al-
gorithm

= −e f x y x1
2

( ( ) ˆ ( ))2
(4)

3.1.2. Group method of data handling
The GMDH technique, developed by Ivakhnenko (1970), is a type of

feed forward neural network for modelling non-linear, unstructured
and complex systems (Mofki et al., 2018). A GMDH is a multilayer
network which is made up of a set of quadratic neurons that are spe-
cially structured to connect sets of input parameters with their re-
spective target parameters. GMDH has the ability to automatically learn
the underlying complex relations that dominate the system variables in
order to select the optimal network structure. This results in GMDH
having a great ability to generalise and approximate complex non-
linear systems. The GMDH approach is characterised by an inductive
self-organising procedure used for obtaining a multi-parametric model
with feasible variants. This allows the researcher to build models of
complex systems without making assumptions about the internal
workings. GMDH uses a multilayer network of the second order of the
Kolmogorov-Gabor polynomial (Eq. (5)) to characterise the complex
nonlinear relationships among a system's input and output parameters
(Assaleh, Shanableh, & Kheil, 2013)

= + + + + +y a a x a x a x x a x a xˆ i j i j i j0 1 2 3 4
2

5
2

(5)

here, ŷ is the predicted output, a is the vector of the coefficient of the
polynomial function, xi and xj are the input variables.

In model building, the number of neurons in a subsequent layer can
be excessively large as the number of inputs to the preceding layer
becomes large. Subsequently, a neuron selection criterion per layer
based on reducing the mean square error ϵ (Eq. (6))obtained from the
difference between the predicted output ŷi and the observed output yi is
used to keep the network complexity feasible (Assaleh et al., 2013)

∑= − ←
=

ε
p

y y1 ( ˆ ) min
k

p

i i
1

2

(6)

where p denotes the entire number of samples observed.
A typical example of GMDH architecture with four inputs and 3

layers and selected and unselected neurons is shown in Fig. 3.

3.1.3. Backpropagation neural network
The BPNN, as shown in Fig. 4, is a feed forward neural network that

has input, output and hidden layers. The input layer receives external
input vector Xj (Eq. (7)) which is assigned to individual weights wij with
a constant bias bi. The weighted inputs are then transmitted to the
hidden layer

Fig. 2. WNN architecture.

Fig. 3. GMDH architecture.
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=X X X X X( , , , ..., )j m
Τ

1 2 3 (7)

The inputs to each hidden layer neuron is then transformed via a
mathematical non-linear activation function. The preferred transfer
function is either the hyperbolic tangent or the logarithmic sigmoid
(Dorofki, Elshafie, Jaafar, Karim, & Mastura, 2012). The output from
the hidden layer Yi (Eq. (8)) is then fed as input to the output layer

∑=
⎛

⎝
⎜ +

⎞

⎠
⎟

=

Y f w X b( )i
j

m

ij j i
1 (8)

where wij is the weight connecting the input layer to the hidden layer, bi
denotes the bias term and f is the transfer function used in the hidden
layer.

In the output layer, the input-output transformation is carried out
by the linear activation function in order to produce a final network
output ŷ (Eq. (9))

=y Yˆ i (9)

3.1.4. Radial basis function neural network
RBFNN is a three-layered feed forward neural network made up of

an input layer, a single hidden layer and an output layer. A typical
example of RBFNN architecture of input vector X X X X X( , , , ..., )i m1 2 3 ,
radial basis functions …ϕ ϕ ϕ ϕ( , , , , )r1 2 3 , weights w w w w( , , , ..., )r1 2 3 and
output ( ŷ) is illustrated in Fig. 5. The input layer transmits inputs from
the environment external to the hidden layer without any weight
connections. In each hidden layer's neuron is a radial basis activation
function which accounts for the non-linear processing element in the
hidden layer (Shin & Park, 2000). This study applied the widely used
Gaussian radial basis function. The Gaussian function responds only to
a small input space region where the Gaussian is centred (Poulos,

Belesiotis, & Alexandris, 2010; Singla, Subbarao, & Junkins, 2007).
Each neuron then computes the Euclidean distance from each input
object to the centre of the Gaussian function. Finding suitable centres
for the Gaussian function is required in order to successfully implement
the RBFNN. The Gaussian function is characterised by two parameters,
namely: width parameter σj and centre cj. The computed Euclidean
norm is then sent into the Gaussian function to output netj as shown in
Eq. (10)

⎜ ⎟= ⎛

⎝
−

− ⎞

⎠
net

X c
σ

exp
‖ ‖

2j
i j

j

2

2
(10)

here −X c‖ ‖i j denotes the computed Euclidean distance between cj and
Xi. The input to the output layer is the weighted sum of the outputs of
the hidden neurons. This is then processed in the output layer by a
linear function to produce the final output ŷl of the RBFNN as expressed
in Eq. (11)

∑= +
=

y b w netl̂
j

p

jl j
1 (11)

where p is the number of neurons in the hidden layer, b is the bias term
and wjl denotes the weight connecting the hidden layer to the output
layer.

The width parameters, centres, and the connection weights are the
parameters that are adjusted in the process of training RBFNN. It is
worth noting that the training is aimed at reducing the mean square
error (Eq. (12)) between the predicted output yl and the actual output al

∑= −
=R

aMinimise (Mean Square Error) 1 ( ŷ)
R

l l
l 1

2

(12)

where R is the number of observations.

3.1.5. Generalised regression neural network
GRNN is a feed forward neural network with a one pass learning

algorithm. It is a highly parallel structure with four layers, i.e.: an input
layer, pattern layer, summation layer and output layer as shown in
Fig. 6 (Specht, 1991). The input layer receives data from the external
environment and transmits this to the pattern layer. This pattern layer
contains radial basis neurons whose transfer function is Gaussian with a
spreading factor (Dong-xiao, Da, & Mian, 2008). Each radial basis
neuron represents a training pattern in the pattern layer. The output of
the pattern layer measures the distance from the inputs to the stored
pattern. The summation layer is made up of the S-summation neuron
and the D-summation neuron. Each neuron in the pattern layer is
connected to these two neurons in the summation layer. The D-sum-
mation outputs a sum of the unweighted output of the pattern neurons
while the S-summation outputs a summation of the weighted output.
The quotient of the two outputs of the summation layer to produce the
predicted value Y Xˆ ( ) (Eq. (13)) is finally computed by the output layer

Fig. 4. BPNN architecture.

Fig. 5. RBFNN architecture. Fig. 6. GRNN architecture.
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where n denotes the number of elements of the input vector, Xk and X
represent the kth element of the input vector and ζ is the spread
parameter.

3.2. Empirical techniques

In order to assess the performance of the previously explained ANN
models, four conventional empirical models, i.e. the Indian Standard,
USBM, Langefors and Kilhstrom and Ambrasey-Hendron (Ambraseys &
Hendron, 1968; Duvall & Petkof, 1959; Indian Standard Institute, 1973;
Langefors & Kihlstrom, 1963) were also selected and applied for com-
parison. These were selected, due to their widespread application
(Khandelwal & Singh, 2006; Saadat et al., 2014; Mohamadnejad,
Gholami, & Ataei, 2012; Armaghani, Hajihassani, Mohamad, Marto, &
Noorani, 2014; Tiile, 2016; Ragam & Nimaje, 2018a and references
therein) over the years as benchmark techniques to compare with soft
computing techniques for blast-induced ground vibration prediction.
Hence, these empirical methods were applied and compared to the
WNN approach proposed in this study. Furthermore, these empirical
models were applied because, currently, they are the models employed
by mining companies in Ghana for the purpose of predicting ground
vibration induced by blasting.

These techniques are mathematically expressed in Eqs. (14)–(17).

i. Indian Standard

= ⎡

⎣
⎢

⎤

⎦
⎥PPV k w

d

b

2
3 (14)

ii. USBM

= ⎡
⎣
⎢

⎤
⎦
⎥

−

PPV k d

w

b

1
2 (15)

iii. Langefors and Kilhstrom

= ⎡

⎣
⎢

⎤

⎦
⎥PPV k w

d

b1
2

3
4 (16)

iv. Ambrasey-Hendron

= ⎡
⎣
⎢

⎤
⎦
⎥

−

PPV k d

w

b

1
3 (17)

where PPV is peak particle velocity (mm/s), w is the maximum in-
stantaneous charge (kg), d is the distance from the blast face to the
monitoring point, k and b are site specific constants. In this study, the
site constants were determined by multiple regression analysis.

4. Evaluation criteria for model performance

The performance of the constructed BPNN, GMDH, RBFNN, WNN,
GRNN and empirical models (Indian Standard, USBM, Ambrasey-
Hendron, and Langefors and Kilhstrom) were evaluated using five sta-
tistical measures. These being: the coefficient of determination (R2),
root mean square error (RMSE), mean square error (MSE), correlation
coefficient (R) and relative root mean square error (RRMSE).They are
mathematically expressed in Eqs. (18)–(22). The MSE was used as the
error criterion for determining the optimum structures of the ANN
techniques utilised in this study. These selected performance indices are
important as they help with the selection of a better model. The reason
for this is that a model with higher R2 and R values is better than that
with lower R2 and R values. A model with lower MSE, RMSE and
RRMSE values is better than one with higher MSE, RMSE and RRMSE
values.
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here, ŷav is the average of the predicted values, ŷi is the predicted values,
m denotes the total number of testing dataset, yav is the average of the
measured values and yi is the measured values.

5. Results and discussion

The various models are presented in this section. The computed
statistical performance criteria for the various models are also provided
and discussed.

5.1. Models formed

5.1.1. Soft computing techniques
The optimal training and testing results based on the MSE and R

criteria, as well as the optimal adjustable parameters that led to the
development of the various soft computing models, are presented in
Table 2.

The various soft computing models formed can, therefore, be de-
scribed with reference to Table 2. In the development of the WNN, a
Mexican hat wavelet function (Mi, Ren, Ouyang, Wei, & Ma, 2005) was
used as the activation function in the hidden layer. This is because, in
comparison with the other mother wavelet functions, the Mexican hat

Table 2
Optimal training and testing of R and MSE results for the various soft computing techniques.

Model Adjustable parameters Training Testing

Width parameter Number of neurons Number of wavelons R MSE R MSE

WNN - - 3 0.9103 0.0206 0.8438 0.0227
GMDH - 1 - 0.9049 0.0218 0.827 0.0249
BPNN - 1 - 0.909 0.0209 0.8537 0.0217
RBFNN 1.7 9 - 0.91043 0.02059 0.84764 0.02227
GRNN 0.4 - - 0.90977 0.02303 0.80121 0.03006
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has been shown in previous studies to be computationally efficient and
can be differentiated analytically (Jiang & Adeli, 2005). In the WNN
formulation, five inputs (maximum instantaneous charge (kg), number
of blast holes, powder factor (kg/m3), hole depth (m) and distance from
blasting point to monitoring station (m) and one output (PPV) were
used as the input and output pattern to the WNN. The optimum number
of wavelons in the hidden layer was estimated by experimenting 1 to 20
wavelons. The experimentation results revealed that, three wavelons
gave the highest R and the lowest MSE based on the testing data results.
The optimum WNN structure was [5–3 – 1], that is five inputs, three
wavelons in the hidden layer with one output.

The developed GMDH model with the lowest MSE and highest R
value was found to have three parameters in the input layer, one hidden
layer with one neuron and one output. The corresponding polynomial
equations of the developed GMDH for the PPV prediction are shown in
Eqs. (23) and (24). In fact, these equations revealed that the main
contributing input variables among the entire inputs under considera-
tion are the powder factor (kg/m3), the distance from blasting point to
monitoring station (m), and the number of blast holes.

Layer 1

= − + − +

−

x x x x x x

x

0.8228 0.4542( ) 0.361( ) 0.06975( )( ) 0.005446( )

0.096( )
6 3 1 1 3 3

2

1
2

(23)

Output layer

= + − + −

−

PPV x x x x

x x

0.08641 0.731( ) 0.06422( ) 0.6728( )( ) 0.07829

( ) 0.04503( )
6 5 5 6

6 5
2

(24)

where x5 is the powder factor (kg/m3), x3 is the distance from blasting
point to the monitoring station(m), x1 is the number of blast holes and
x6 is the result of layer 1.

The design parameters of a BPNN are the number of hidden layers to
be used, type of transfer function, the training algorithm and the
number of neurons in the hidden layer. This study applied a BPNN with
a single hidden layer. This is because according to Hornik,
Stinchcombe, and White (1989) a BPNN with one hidden layer has been
found to be a universal approximator of any complex function. Fur-
thermore, a hyperbolic tangent as well as linear transfer functions were
applied in this study as the activation functions in the hidden and
output layers, respectively. The Levenberg-Marquardt algorithm was
utilised when training the BPNN. The training results revealed that a
BPNN with one neuron in the hidden layer produced the lowest MSE
and the highest R. The optimum structure of the BPNN was [5–1 – 1]
which is explained as five (5) input parameters, one (1) hidden neuron
with one (1) output.

The development of the RBFNN is dependent on the width para-
meter σ , the maximum number of neurons (n) in the hidden layer and
the Gaussian activation function. The design values of σ and n were
determined based on the statistical error criterion. That is, the

developed RBFNN gave the lowest MSE and highest Rat n = 9 and σ
= 1.7. This resulted in an optimum RBFNN structure of [5–9 – 1] which
equates to five (5) inputs, nine (9) hidden neurons and one (1) output.

The design parameter of GRNN that affects the development of its
model is the width parameter of the radial basis activation function. In
this study, the design value of the width parameter was also determined
via a sequential trial and error approach until minimum MSE and
maximum R values were recorded. The optimum GRNN model gave the
best performance with a width parameter of 0.40.

From Table 2, it can be observed that the testing error for the soft
computing models was very close to the training error. This indicates a
good fit of these models and that the optimum models developed are
devoid of any overfitting condition.

5.1.2. Empirical techniques
Using the k and b values obtained from the multiple regression

analysis, the empirical models formed are presented in Table 3.

5.2. Model performance assessment

Using the testing data, the statistical performance measures of MAE,
RMSE, RRMSE, R and R2 were used as measures to evaluate the ap-
proximation capability of the fitted models. The results are shown in
Table 4.

It can be observed from Table 4 that the dimensioned error statistics
of the various ANN models (WNN, BPNN, RBFNN, GRNN and GMDH)
collectively outperformed the empirical models in their entirety. That
is, the Langefors-Kihlstrom, USBM, Indian Standard and Ambrasey-
Hendron models had the worse statistical performance when taking into
account the MAE, RMSE, RRMSE, R and R2. It can also be observed that
the PPV predicted by the ANN models correlated better with the actual
PPV than the empirical models. This is because the ANN models (WNN,
BPNN, RBFNN, GRNN and GMDH) had R values greater than 80% while
the empirical models had R values below 79%. This means that the
empirical models were not better correlated than the ANN models, as
they had lower R values relative to the ANN models.

Comparatively, the WNN model's prediction results are satisfactory
and comparable to the BPNN and RBFNN. This can be seen from
studying Table 4 which confirms that the WNN had relatively smaller
error indicators of MAE, RMSE, RRMSE and high R values, similar to
the benchmark methods of BPNN and RBFNN. In comparison, BPNN
was the best model. However, looking at the results (Table 4), it can be
observed that WNN deviated by approximately 0.0024 mm/s,
0.0035 mm/s, 0.0043 mm/s, 0.0099 and 0.0168 from the BPNN model
results when taking into account MAE, RMSE, RRMSE, R and R2. Fur-
thermore, the WNN model was able to account for 71.20% (Table 4) of
the variation of the predicted PPV which was very close to that ac-
counted for by the BPNN (72.88%) and RBFNN (71.85%). The other
ANN models of GMDH and GRNN accounted for 68.70% and 68.69%of
the variation, respectively. The empirical models, however, could only
explain a maximum of about 61% of the variation of the predicted PPV.

Table 3
Formulated models of the empirical equations.

Empirical Methods Equations

Indian Standard
= ⎡

⎣
⎢

⎤

⎦
⎥PPV 0.7676 w

d
2

3

0.938

USBM
= ⎡

⎣
⎢

⎤
⎦
⎥

−

PPV 300.7 d

w
1

2

1.319

Langefors and Kihlstrom
= ⎡

⎣
⎢

⎤

⎦
⎥PPV 61.406 w

d

1
2

3
4

1.5475

Ambrasey-Hendron
= ⎡

⎣
⎢

⎤

⎦
⎥

−

PPV 1724.4 d

w
1

3

1.464

Table 4
Summary performance statistics for the various models.

Various models Performance criteria

MAE RMSE RRMSE R R2

WNN 0.1240 0.1508 0.1856 0.8438 0.7120
GMDH 0.1305 0.1579 0.1943 0.8289 0.6870
BPNN 0.1216 0.1473 0.1813 0.8537 0.7288
GRNN 0.1458 0.1734 0.2134 0.8012 0.6869
RBFNN 0.1213 0.1492 0.1837 0.8476 0.7185
USBM 0.1818 0.2369 0.2916 0.7622 0.5810
Ambrasey-Hendron 0.2009 0.2566 0.3159 0.7466 0.5574
Indian Standard 0.1504 0.1849 0.2276 0.7554 0.5707
Langefors-Kihlstrom 0.1630 0.2136 0.2629 0.7833 0.6136
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This reveals that the observed PPV swere better replicated by the ANN
models than the empirical methods. The explained results are graphi-
cally illustrated by Figs. 7–11.

The correlation between the various techniques was also calculated
and presented in Table 5.

It can be observed from Table 5 that the prediction of the various
ANN models (BPNN, RBFNN, WNN, GRNN and GMDH) had very strong

correlation between themselves, ranging from 0.9351 to 0.9967. This
indicates that PPV prediction by WNN, GMDH, GRNN, RBFNN and
BPNN are almost similar. It can also be seen that the PPV predicted by
the empirical models also had a correlation range of 0.8758–0.9965. In
comparison, the ANN models have demonstrated superiority over
conventional vibration predictors due to the fact that the ANN models
in general have the ability to adequately learn and model non-linear
and complex relationships in real world situations. In Table 5, it can be
observed that the WNN whose efficiency was tested has demonstrated
good prediction capabilities and could serve as a supplementary tool in
the prediction of ground vibration induced by blasting. This assertion
has been made because the correlation between the PPV predicted by
WNN and the best performing model (BPNN) was 0.9891 and the cor-
relation between the PPV predicted by WNN and RBFNN (the second
best performing model) was 0.9967. These correlation results indicate
the predictive accuracy and linear dependency strength of WNN and
support its application for blast-induced ground vibration prediction.
Mathematically, the strength of the WNN approach lies in its ability to
expand and contract its basis function to detect, simultaneously, the
pattern characteristics of the measured PPV. That is, the nonlinear
approximation ability of WNN is augmented by the combination of the
strengths of discrete wavelet transformation and neural network pro-
cessing (Shen & Li, 2013).

6. Conclusions

In this study, WNN has been tested for the first time as an adaptive

Fig. 7. Performance of various techniques using mean absolute error.

Fig. 8. Performance of various techniques using root mean square error.

Fig. 9. Performance of various techniques using relative root mean square
error.

Fig. 10. Performance of various techniques using correlation coefficient.

Fig. 11. Performance of various techniques using coefficient of determination.
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computational supporting tool for PPV prediction in a mine. For com-
parison, four benchmark methods of ANN, namely GMDH, BPNN,
GRNN and RBFNN, were applied to assess the suitability of the WNN
approach. In all, a dataset consisting of 210 blastevents was obtained
from a mining company in Ghana and used to develop the models. One
hundred and thirty (130) pieces of blast data from the total 210 was
used to construct the various models. The remaining 80 pieces of blast
data were used to autonomously evaluate the models’ adequacy. To
formulate the model, the distance from blasting point to the monitoring
station (m), the number of blast holes, the powder factor (kg/m3), hole
depth (m) and the maximum instantaneous charge (kg) were the input
parameters while the PPV value was used as the output parameter. To
provide a comprehensive performance evaluation, the widely used
empirical techniques of USBM, Ambrasey-Hendron, Indian Standard
and Langefors and Kilhstrom were applied to the blast data for com-
parison.

Based on the obtained statistical results, the accuracy of the WNN
with a single hidden layer and three wavelons was adjudged to produce
satisfactory and comparable results to the benchmark methods of BPNN
and RBFNN when predicting the blast-induced ground vibration. This
assertion has been made because the WNN had minor deviations of
approximately 0.0024 mm/s, 0.0035 mm/s, 0.0043 mm/s, 0.0099 and
0.0168 from the best performing model of BPNN, when MAE, RMSE,
RRMSE, R and R2 were considered. The overall analysis indicates that
the WNN developed model has demonstrated its suitability to serve as a
supplementary ANN prediction tool due to its strong calibration power
and good generalisation capabilities. Therefore, the WNN model could
be replicated and applied in mining and civil engineering industries
where blast operation is still used as a means of rock fragmentation.
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