PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new conservative finite difference scheme for 1D Cahn-Hilliard equation coupled with elasticity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we give analysis for a structure-preserving finite difference scheme to the Cahn-Hilliard system coupled with elasticity in one space dimension. In the previous article [K. Shimura and S. Yoshikawa, Error estimate for structure-preserving finite difference schemes of the one-dimensional Cahn-Hilliard system coupled with viscoelasticity, in: Regularity and Asymptotic Analysis for Critical Cases of Partial Differential Equations, RIMS Kôkyûroku Bessatsu B82, Research Institute for Mathematical Sciences (RIMS), Kyoto (2020), 159-175], we studied the system coupled with viscoelasticity, where we proposed a conservative numerical scheme for the system which inherits the total energy conservation and momentum conservation laws, and showed the error estimate. However, the error estimate can not be applied to the system without viscosity, due to the fact that the proof relies on the viscous term. Here, we show the error estimate for the system without viscosity by proposing a new structure-preserving finite difference scheme for the system. In addition, we also give the proof of existence of solution for the scheme.
Wydawca
Rocznik
Strony
311--332
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • Computer and Information Science, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
  • Division of Mathematical Sciences, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita-shi, Oita, 870-1192, Japan
Bibliografia
  • [1] E. Bonetti, P. Colli, W. Dreyer, G. Gilardi, G. Schimperna and J. Sprekels, On a model for phase separation in binary alloys driven by mechanical effects, Phys. D 165 (2002), no. 1-2, 48-65.
  • [2] D. Furihata and T. Matsuo, Discrete Variational Derivative Method, Chapman & Hall/CRC Numer. Anal. Sci. Comput., CRC Press, Boca Raton, 2010.
  • [3] H. Garcke, On Cahn-Hilliard systems with elasticity, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 2, 307-331.
  • [4] H. Garcke, On a Cahn-Hilliard model for phase separation with elastic misfit, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), no. 2, 165-185.
  • [5] H. Garcke and U. Weikard, Numerical approximation of the Cahn-Larché equation, Numer. Math. 100 (2005), no. 4, 639-662.
  • [6] M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Phys. D 92 (1996), no. 3-4, 178-192.
  • [7] E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Ser. Comput. Math. 31, Springer, Berlin, 2006.
  • [8] Z. Kosowski and I. Pawłow, Unique global solvability of the Fried-Gurtin model for phase transitions in solids, Topol. Methods Nonlinear Anal. 24 (2004), no. 2, 209-237.
  • [9] A. Miranville, Long-time behavior of some models of Cahn-Hilliard equations in deformable continua, Nonlinear Anal. Real World Appl. 2 (2001), no. 3, 273-304.
  • [10] A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Math. 2 (2017), 479-544.
  • [11] M. Okumura, A stable and structure-preserving scheme for a non-local Allen-Cahn equation, Jpn. J. Ind. Appl. Math. 35 (2018), no. 3, 1245-1281.
  • [12] M. Okumura and D. Furihata, A structure-preserving scheme for the Allen-Cahn equation with a dynamic boundary condition, Discrete Contin. Dyn. Syst. 40 (2020), no. 8, 4927-4960.
  • [13] I. Pawłow and W. M. Zajączkowski, Classical solvability of 1-D Cahn-Hilliard equation coupled with elasticity, Math. Methods Appl. Sci. 29 (2006), no. 7, 853-876.
  • [14] I. Pawłow and W. M. Zajączkowski, Global existence and uniqueness of weak solutions to Cahn-Hilliard-Gurtin system in elastic solids, in: Parabolic and Navier-Stokes Equations, Banach Center Publ. 81, Polish Academy of Sciences, Warsaw (2008), 337-368.
  • [15] I. Pawłow and W. M. Zajączkowski, Strong solvability of 3-D Cahn-Hilliard system in elastic solids, Math. Methods Appl. Sci. 31 (2008), no. 8, 879-914.
  • [16] I. Pawłow and W. M. Zajączkowski, Global regular solutions to Cahn-Hilliard system coupled with viscoelasticity, Math. Methods Appl. Sci. 32 (2009), no. 17, 2197-2242.
  • [17] I. Pawłow and W. M. Zajączkowski, Long time behaviour of a Cahn-Hilliard system coupled with viscoelasticity, Ann. Polon. Math. 98 (2010), no. 1, 1-21.
  • [18] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems, Appl. Math. Math. Comp. 7, Chapman & Hall, London, 1994.
  • [19] K. Shimura and S. Yoshikawa, Error estimate for structure-preserving finite difference schemes of the one-dimensional Cahn-Hilliard system coupled with viscoelasticity, in: Regularity and Asymptotic Analysis for Critical Cases of Partial Differential Equations, RIMS Kôkyûroku Bessatsu B82, Research Institute for Mathematical Sciences (RIMS), Kyoto (2020), 159-175.
  • [20] D. Wegner, Existence for coupled pseudomonotone-strongly monotone systems and application to a Cahn-Hilliard model with elasticity, Nonlinear Anal. 113 (2015), 385-400.
  • [21] S. Yoshikawa, Energy method for structure-preserving finite difference schemes and some properties of difference quotient, J. Comput. Appl. Math. 311 (2017), 394-413.
  • [22] S. Yoshikawa, Remarks on energy methods for structure-preserving finite difference schemes - small data global existence and unconditional error estimate, Appl. Math. Comput. 341 (2019), 80-92.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ad3e2ef-f6bd-47d6-ba38-a1c24af57ce7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.