PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Nanoparticles on Biogas Production from Anaerobic Digestion of Sewage Sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Since anaerobic digestion (AD) is the preferred procedure for sludge treatment and disposal, it is constrained by the hydrolysis and acidogenesis stages. Nanomaterials have an impact on the AD process due to their unique properties (large specific surface areas, solubility, adsorption reduction of heavy metals, degradation of organic matter, reduction of hydrogen supplied and catalytic nature) which make them advantageous in many applications due to their effectiveness in improving the AD efficiency. Magnetic Nanoparticles (MNPs) were used in the present study to improve the biogas production. The experiments were divided into two stages to evaluate the effect of adding MNPs to two types of sewage sludge (SS): attached growth process (AG) and activated sludge (AS). The first stage consists of 15 tests divided into three experiments (A, B, and C). Doses of MNPs (20, 50, 100, 200) mg/l were added to all digesters in the same experiment except for one digester (the control). Experiments A, B and C achieved the highest biogas production when 100 mg/l of MNPs was added. They were 1.9, 1.93 and 2.07 times higher than the control for A, B and C respectively. The second stage consists of 12 tests with a pretreatment for some of SS. It was divided into two experiments (D, E), where the chemical pretreatment was applied to experiment D and the thermal pretreatment was applied to experiment E except for the control. For digester D4, which had 100 mg/l of MNPs after a chemical pretreatment at pH = 12, the biogas production increased by 2.2 times higher than the control (D0) and 1.5 times higher than the untreated sludge with the addition of 100 mg/l MNPs (DN). Thermal pretreatment at 100 °C with addition of 100 mg/l MNPs (E4) achieved a biogas yield 2 times higher than the control (E0), and 1.39 times higher than untreated sludge with 100 mg/l MNPs (EN). The previous results indicate that the integration of magnetite can serve as the conductive materials, promoting inherent indirect electron transfer (IET) and direct interspecies electron transfer (DIET) between methanogens and fermentative bacteria which lead to a more energy-efficient route for interspecies electron transfer and methane productivity. This study demonstrated the positive effect of magnetite on organic biodegradation, process stability and methane productivity.
Rocznik
Strony
222--240
Opis fizyczny
Bibliogr. 63 poz., rys., tab.
Twórcy
autor
  • Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
  • Department of Chemical Engineering, Faculty of Engineering, Sirte University, Sirte, Libya
  • Faculty of Civil Engineering, Technical University of Kosice, Vysokoskolska 4, 042 00 Kosice, Slovak Republic
autor
  • Environmental Engineering Department, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
Bibliografia
  • 1. Ahmed, B., Tyagi, V.K., Kazmi, A.A., & Khursheed, A. 2022. New insights into thermal-chemical pretreatment of organic fraction of municipal solid waste: Solubilization effects, recalcitrant formation, biogas yield and energy efficiency. Fuel, 319, 123725.
  • 2. Ajay, C.M., Mohan, S., Dinesha, P., & Rosen, M. A. 2020. Review of impact of nanoparticle additives on anaerobic digestion and methane generation. Fuel, 277, 118234.
  • 3. Al-Essa, E.M. 2020. The effect of magnetite nanoparticles on methane production from the anaerobic digestion of acetate, propionate and glucose.
  • 4. Almukhtar, R.S., Alwasiti, A.A., & Naser, M.T. 2012. Enhancement of Biogas production and organic reduction of sludge by different pre-treatment processes. Iraqi Journal of Chemical and Petroleum Engineering, 13(1), 19-31.
  • 5. Almukhtar, R.S., Alwasiti, A.A., & Naser, M.T. 2013. Enhancement of sludge digestion via different physicochemical methods. Journal of Selcuk University Natural and Applied Science, (1), 648-668.
  • 6. Angelidaki, I., Heinfelt, A., & Ellegaard, L. 2006. Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants. Water science and technology, 54(2), 237-244.
  • 7. Appels, L., Degrève, J., Van der Bruggen, B., Van Impe, J., & Dewil, R. 2010. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresource technology, 101(15), 5743-5748.
  • 8. Arya, I., Poona, A., Dikshit, P.K., Pandit, S., Kumar, J., Singh, H.N. & Kumar, S. 2021. Current Trends and Future Prospects of Nanotechnology in Biofuel Production. Catalysts, 11(11), 1308.
  • 9. Baek, G., Kim, J., Cho, K., Bae, H., & Lee, C. 2015. The biostimulation of anaerobic digestion with (semi) conductive ferric oxides: their potential for enhanced biomethanation. Applied microbiology and biotechnology, 99(23), 10355-10366.
  • 10. Bamati, N., & Raoofi, A. 2020. Development level and the impact of technological factor on renewable energy production. Renewable Energy, 151, 946-955.
  • 11. Bougrier, C., Carrere, H., Delgenes, J., 2005. Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 106, 163–169.
  • 12. Campos, J.L.; Valenzuela-Heredia, D.; Pedrouso, A.; Val del Río, A.; Belmonte, M.; Mosquera-Corral, A. 2016. Greenhouse gases emissions from wastewater treatment plants: minimization, treatment, and prevention. Journal of Chemistry.
  • 13. Capodaglio, A.G.; Olsson, G. 2020. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability, 12(1), 266.
  • 14. Casals E, Barrena R, García A, González E, Delgado L, Busquets-Fité M, 2014. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production. Small, 10(14):2801–8.
  • 15. Cheng, J., Li, H., Ding, L., Zhou, J., Song, W., Li, Y. Y., & Lin, R. 2020. Improving hydrogen and methane co-generation in cascading dark fermentation and anaerobic digestion: the effect of magnetite nanoparticles on microbial electron transfer and syntrophism. Chemical Engineering Journal, 397, 125394.
  • 16. Chislett, M., Guo, J., Bond, P. L., Jones, A., & Yuan, Z. 2020. Structural changes in cell-wall and cell-membrane organic materials following exposure to free nitrous acid. Environmental Science & Technology, 54(16), 10301-10312.
  • 17. Choong, Y.Y., Norli, I., Abdullah, A.Z., & Yhaya, M.F. 2016. Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, 209, 369-379.
  • 18. Choorit, W., Wisarnwan, P. 2007. Effect of temperature on the anaerobic digestion of palm oil mill effluent. Electron. J. Biotechnol. 10 (3), 376–385.
  • 19. Christy, P. M., Gopinath, L. R., & Divya, D. 2014. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167-173.
  • 20. Chynoweth, D. P., Owens, J. M., & Legrand, R. 2001. Renewable methane from anaerobic digestion of biomass. Renewable energy, 22(1-3), 1-8.
  • 21. Climent, M., Ferrer, I., del Mar Baeza, M., Artola, A., Vázquez, F., & Font, X. 2007. Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal, 133(1-3), 335-342.
  • 22. Cruz, E. R., Hernández, L. E. M., De Lira, I. O. H., & Balagurusamy, N. 2020. From Anaerobic Digesters. Nanobiotechnology for Sustainable Bioenergy and Biofuel Production, 3(4), 202.
  • 23. Dykstra, C. M., & Pavlostathis, S. G. 2021. Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system used for biogas upgrading. Water Research, 200, 117268.
  • 24. Eskicioglu, C.; Kennedy, K.J.; Droste, R.L. 2006. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water research, 40(20), 3725-3736
  • 25. Farghali M, Andriamanohiarisoamanana FJ, Ahmed MM, Kotb S, Yamamoto Y, Iwasaki M, et al. 2020. Prospects for biogas production and H2S control from the anaerobic digestion of cattle manure: The influence of microscale waste iron powder and iron oxide nanoparticles. Waste Managent;101:141–9.
  • 26. Farghali, M., Andriamanohiarisoamanana, F. J., Ahmed, M. M., Kotb, S., Yamashiro, T., Iwasaki, M., & Umetsu, K. 2019. Impacts of iron oxide and titanium dioxide nanoparticles on biogas production: hydrogen sulfide mitigation, process stability, and prospective challenges. Journal of environmental management, 240, 160-167.
  • 27. Feng, Y., Zhang, Y., Xie, Q., Chen, S. 2014. Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron. Water Res. 52, 242.
  • 28. Fonts, I., Azuara, M., Gea, G., & Murillo, M. B. 2009. Study of the pyrolysis liquids obtained from different sewage sludge. Journal of analytical and applied pyrolysis, 85(1-2), 184-191.
  • 29. Hassanein, A., Lansing, S., & Tikekar, R. 2019. Impact of metal nanoparticles on biogas production from poultry litter. Bioresource Technology, 275, 200-206.
  • 30. He, H., Xin, X., Qiu, W., Li, D., Liu, Z., & Ma, J. 2021. Waste sludge disintegration, methanogenesis and final disposal via various pretreatments: Comparison of performance and effectiveness. Environmental Science and Ecotechnology, 8, 100132.
  • 31. Holmes, A. B., & Gu, F. X. 2016. Emerging nanomaterials for the application of selenium removal for wastewater treatment. Environmental Science: Nano, 3(5), 982-996.
  • 32. Insam, H., Gómez-Brandón, M., & Ascher, J. 2015. Manure-based biogas fermentation residues–Friend or foe of soil fertility? Soil Biology and Biochemistry, 84, 1-14.
  • 33. Jiang, S., Park, S., Yoon, Y., Lee, J. H., Wu, W. M., Phuoc Dan, N. & Hur, H. G. 2013. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Environmental Science & Technology, 47(17), 10078-10084.
  • 34. Júnior, A. D. N. F., Etchelet, M. I., Braga, A. F. M., Clavijo, L., Loaces, I., Noya, F., & Etchebehere, C. 2020. Alkaline pretreatment of yerba mate (Ilex paraguariensis) waste for unlocking low-cost cellulosic biofuel. Fuel, 266, 117068.
  • 35. Li, H., Chang, J., Liu, P., Fu, L., Ding, D., Lu, Y. 2014. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments: syntrophic butyrate oxidation facilitated by nano Fe3O4. Environ. Microbiol. 17 (5)
  • 36. Lu, X.; Wang, H.; Ma, F.; Zhao, G.; Wang, S. 2017. Enhanced anaerobic digestion of cow manure and rice straw by the supplementation of an iron oxide-zeolite system. Energy Fuels, 31, 599–606.
  • 37. Lu, X., Wang, H., Ma, F., Zhao, G., & Wang, S. 2018. Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: effects of an iron oxide-zeolite additive. Bioresource technology, 262, 169-176.
  • 38. Maiti, S., Aydin, Z., Zhang, Y., & Guo, M. 2015. Reaction-based turn-on fluorescent probes with magnetic responses for Fe 2+ detection in live cells. Dalton Transactions, 44(19), 8942-8949.
  • 39. Maryam, A., Badshah, M., Sabeeh, M., & Khan, S. J. 2021. Enhancing methane production from dewatered waste activated sludge through alkaline and photocatalytic pretreatment. Bioresource Technology, 325, 124677.
  • 40. Mbulawa, Siyasanga. 2017. Bio-delipidation of pre-treated poultry slaughterhouse wastewater by enzymes from the wastewater isolates.” PhD diss., Cape Peninsula University of Technology.
  • 41. Ponsá S. 2011. Different indices to express biodegradability in organic solid wastes. Application to full scale waste treatment plants. Universitat Autònoma de Barcelona.
  • 42. Rafique, R., Poulsen, T. G., Nizami, A. S., Murphy, J. D., & Kiely, G. 2010. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. Energy, 35(12), 4556-4561.
  • 43. Reguera, J., Hyewon K., Stellacci, F. 2013. Advances in Janus nanoparticles.” CHIMIA International Journal for Chemistry 67.11: 811-818.
  • 44. Ren, S., Usman, M., Tsang, D. C., O-Thong, S., Angelidaki, I., Zhu, X. & Luo, G. 2020. Hydrochar-facilitated anaerobic digestion: evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environmental Science & Technology, 54(9), 5755-5766.
  • 45. Shen, M., Huang, W., Chen, M., Song, B., Zeng, G., & Zhang, Y. 2020. (Micro) plastic crisis: unignorable contribution to global greenhouse gas emissions and climate change. Journal of Cleaner Production, 254, 120138.
  • 46. Shen, Y., Linville, J.L., Urgun-Demirtas, M., Schoene, R.P., & Snyder, S.W. 2015. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Applied Energy, 158, 300-309.
  • 47. Siciliano, A., Limonti, C., Curcio, G. M., & Calabrò, V. 2019. Biogas generation through anaerobic digestion of compost leachate in semi-continuous completely stirred tank reactors. Processes, 7(9), 635.
  • 48. Slonczewski, J.L., Fujisawa, M., Dopson, M., & Krulwich, T.A. 2009. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Advances in microbial physiology, 55, 1-317.
  • 49. Syahri, S.N.K.M., Hasan, H.A., Abdullah, S.R.S., Othman, A.R., Abdul, P.M., Azmy, R.F.H.R., & Muhamad, M.H. 2022. Recent Challenges of Biogas Production and its Conversion to Electrical Energy. Journal of Ecological Engineering, 23(3), 251-269.
  • 50. Valo, A., Carrère, H., & Delgenès, J. P. 2004. Thermal, chemical and thermo‐chemical pre‐treatment of waste activated sludge for anaerobic digestion. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79(11), 1197-1203.
  • 51. Van, D.P., Fujiwara, T., Tho, B.L., Toan, P.P.S., & Minh, G.H. 2020. A review of anaerobic digestion systems for biodegradable waste: Configurations, operating parameters, and current trends. Environmental Engineering Research, 25(1), 1-17.
  • 52. Volosova, M.A., Okunkova, A.A., Fedorov, S.V., Hamdy, K., & Mikhailova, M.A. 2020. Electrical discharge machining non-conductive ceramics: combination of materials. Technologies, 8(2), 32.
  • 53. Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. 2019. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered, 10(1), 437-458.
  • 54. Wang, R., Lv, N., Li, C., Cai, G., Pan, X., Li, Y., & Zhu, G. 2021. Novel strategy for enhancing acetic and formic acids generation in acidogenesis of anaerobic digestion via targeted adjusting environmental niches. Water Research, 193, 116896.
  • 55. Weiland, P. 2010. Biogas production: current state and perspectives. Applied microbiology and biotechnology, 85(4), 849-860.
  • 56. Wilson, C.A., & Novak, J.T. 2009. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water research, 43(18), 4489-4498.
  • 57. Wu, D., Zheng, S., Ding, A., Sun, G., & Yang, M. 2015. Performance of a zero valent iron-based anaerobic system in swine wastewater treatment. Journal of hazardous materials, 286, 1-6.
  • 58. Yan, Y., Hanlong Ch., Wenying X., Qunbiao H. and Qi Z. 2013. Enhancement of biochemical methane potential from excess sludge with low organic content by mild thermal pretreatment. Biochemical engineering journal 70: 127-134.
  • 59. Zhang, C., Su, H., Baeyens, J., & Tan, T. 2014. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383-392.
  • 60. Zhang, Y., Yang, Z., Xu, R., Xiang, Y., Jia, M., Hu, J. & Cao, J. 2019. Enhanced mesophilic anaerobic digestion of waste sludge with the iron nanoparticles addition and kinetic analysis. Science of the Total Environment, 683, 124-133.
  • 61. Zhang, Z., Guo, L., Wang, Y., Zhao, Y., She, Z., Gao, M., & Guo, Y. 2020. Application of iron oxide (Fe3O4) nanoparticles during the two-stage anaerobic digestion with waste sludge: Impact on the biogas production and the substrate metabolism. Renewable Energy, 146, 2724-2735.
  • 62. Zhou, J., You, X., Jia, T., Niu, B., Gong, L., Yang, X., & Zhou, Y. 2019. Effect of nanoscale zero-valent iron on the change of sludge anaerobic digestion process. Environmental Technology.
  • 63. Zhu, X., Blanco, E., Bhatti, M., & Borrion, A. 2021. Impact of metallic nanoparticles on anaerobic digestion: A systematic review. Science of the Total Environment, 757, 143747.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ad34b4f-53ad-4309-bf19-135ac85757c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.