PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparison between cylindrical and cross-shaped magnetic vibration isolators: ideal and practical

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a cross-shaped isolator consisting of cuboidal magnets and a cylindrical isolator are compared by resonance frequency to volume ratio and shape. Both isolators are capable of obtaining a low resonance frequency, i.e. 0.15 Hz and 0.01 Hz for the cross and cylinder, respectively. The volume of both isolators is comparable, only the shape is different, resulting in a tall structure with a small footprint for the cross and a flat with a large diameter cylindrical structure. A sensitivity analysis shows that due to the large amount of magnets, the cross-shaped isolator is less sensitive to manufacturing tolerances.
Słowa kluczowe
Rocznik
Strony
593--604
Opis fizyczny
Bibliogr. 11 poz., rys., wykr., wz.
Twórcy
  • Eindhoven University of Technology Electromechanics and Power Electronics group Den Dolech 2, 5600MB Eindhoven, The Netherlands
  • Eindhoven University of Technology Electromechanics and Power Electronics group Den Dolech 2, 5600MB Eindhoven, The Netherlands
  • Eindhoven University of Technology Electromechanics and Power Electronics group Den Dolech 2, 5600MB Eindhoven, The Netherlands
Bibliografia
  • [1] Deng R., Saathof R., Spronck J.W. et al., Integrated 6-dof lorentz actuator with gravity compensator for precision positioning. the 22nd International Conference on Magnetically Levitated Systems and Linear Drives, Rio de Janeiro (2014).
  • [2] van Casteren D.T.E.H., Paulides J.J.H., Janssen J.L.G., Lomonova E.A., Analytical force, stiffness, and resonance frequency calculations of a magnetic vibration isolator for a micro balance. IEEE Transactions on Industry Applications 51(1): 204-210 (2015).
  • [3] Janssen J.L.G., Paulides J.J.H., Lomonova E.A., Study of Magnetic Gravity Compensator Topologies Using an Abstraction in the Analytical Interaction Equations. Progress In Electromagnetics Research 128: 75-90 (2012).
  • [4] Janssen J.L.G., Gysen B.L.J., Paulides J.J.H., Lomonova E.A., Advanced Electromagnetic Modeling applied to Anti-Vibration Systems for High Precision and Automotive Applications. International Compumag Society Newsletter 19(1): 3-16 (2012).
  • [5] de Weerdt R.E.M.L., Dams J.A.A.T., Magnetic actuator under piezoelectric control European Patent, EP-1424767A2 (2004).
  • [6] van Casteren D.T.E.H., Paulides J.J.H., Lomonova E.A., Gravity Compensation with Cylindrical or Cross-Shaped Magnetic Vibration Isolators. Proceedings of the 10th International Symposium on Linear Drives for Industry Applications, Aachen, pp 1-4 (2015).
  • [7] van Casteren D.T.E.H., Pluk K.J.W., Paulides J.J.H., Lomonova E.A., Modeling the effects of magnetization variations on a permanent magnet based levitation or vibration isolation system. Applied Mechanics and Materials 416-417: 366-372. (2013).
  • [8] Furlani, E.P., Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications. Academic press (2001).
  • [9] van Casteren D.T.E.H., Paulides J.J.H., Lomonova E.A., 3-D Numerical Surface Charge Model including Relative Permeability: the General Theory. IEEE Transactions on Magnetics, 50(11): 8204704 (2014).
  • [10] Allag H., Yonnet J.P., Latreche M.E.H., 3D Analytical Calculation of Forces between Linear Halbach- Type Permanent-Magnet Arrays, Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, Lille, pp. 1-6 (2009).
  • [11] Ravaud R., Lemarquand G., Lemarquand V., Depollier C., Permanent magnet couplings: Field and torque three-dimensional expressions based on the coulombian model, IEEE Transactions on Magnetics, 45(4): 1950-1958 (2009).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ad17d01-ad4f-442a-9b85-6b60d79c1be1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.