Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, Hydroxyapatite (HAp) is extracted from the Rihu fish scales which are generally dumped as garbage. The aluminium composite was fabricated through the powder metallurgy technique by reinforcing HAp (0, 5, 10 and 15 wt%) as a reinforcement. The fabricated samples were sintered through microwave sintering at 530℃ for 15 min under an argon gas environment. The fabricated composites were subjected to X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis to confirm the constituting elements and to describe the reinforcement dispersion in the matrix. Uniform reinforcement dispersion was observed for the composite reinforces with 5% HAp, 10% HAp particles. The mechanical characterization results reveal that the Al-10% HAp composite exhibits a microhardness value of 123 ± 3 Hv and maximum ultimate tensile strength of 263 ± 10 MPa and 299 ± 9 MPa compression strength was obtained due to the presence of a strong bond among the aluminium and HAp particles.
Wydawca
Czasopismo
Rocznik
Tom
Strony
617--624
Opis fizyczny
Bibliogr. 33 poz., fot., rys.
Twórcy
autor
- GMR Institute of Technology, Rajam, India
autor
- University College of Engineering, JNTU Kakinada, India
autor
- National Institute of Technology Silchar, Assam, India
Bibliografia
- [1] S. Das Lala, A.B. Deoghare, S. Chatterjee, Effect of reinforcements on polymer matrix bio-composites - An overview, IEEE J. Sel. Top. Quantum Electron. 25, 1039-1058 (2018). DOI: https://doi.org/10.1515/secm-2017-0281
- [2] A. Simon, D. Lipusz, P. Baumli, P. Balint, G. Kaptay, G. Gergely, A. Sfikas, A. Lekatou, A. Karantzalis, Z. Gacsi, Microstructure and mechanical properties of Al-WC composites, Arch. Metall. Mater. 60, 1517-1521 (2015). DOI: https://doi.org/10.1515/amm-2015-0164.
- [3] B. Leszczyńska-Madej, A. Wasik, M. Madej, Microstructure Characterization of SiC Reinforced Aluminium and Al4Cu Alloy Matrix Composites, Arch. Metall. Mater. 62, 747-755 (2017). DOI: https://doi.org/10.1515/amm-2017-0112
- [4] P. Ashwath, M. Anthony Xavior, The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites, Procedia Eng. 97, 1027-1032 (2014). DOI: https://doi.org/10.1016/j.proeng.2014.12.380
- [5] A.K. Bledzki, A.A. Mamun, J. Volk, Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties, Compos. Sci. Technol. 70, 840-846 (2010). DOI: https://doi.org/10.1016/j.compscitech.2010.01.022
- [6] V.S.S. Venkatesh, A.B. Deoghare, Effect of Particulate Type Reinforcements on Mechanical and Tribological Behavior of Aluminium Metal Matrix Composites: A Review, in: K.M. Pandey, R.D. Misra, P.K. Patowari, U.S. Dixit (eds.), Recent Adv. Mech. Eng., Springer Singapore, Singapore, pp. 295-303, 2021.
- [7] R. Manikandan, T.V. Arjunan, A.R. Akhil, Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al7075) hybrid metal matrix composite, Compos. Part B Eng. 183, 107668 (2020). DOI: https://doi.org/10.1016/j.compositesb.2019.107668
- [8] K.K. Alaneme, I.B. Akintunde, P.A. Olubambi, T.M. Adewale, Fabrication characteristics and mechanical behaviour of rice husk ash - Alumina reinforced Al-Mg-Si alloy matrix hybrid composites, J. Mater. Res. Technol. 2, 60-67 (2013). DOI: https://doi.org/10.1016/j.jmrt.2013.03.012
- [9] B.P. Kumar, A.K. Birru, Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method, Trans. Nonferrous Met. Soc. China (English Ed. 27, 2555-2572 (2017). DOI: https://doi.org/10.1016/S1003-6326(17)60284-X
- [10] R.H.P. Devamani, A. M., Synthesis and Characterization of Aluminium Phosphate Nanoparticles, Int. J. Appl. Sci. Eng. Res. 1. 769-775 (2012). DOI: https://doi.org/10.6088/ijaser.0020101078
- [11] G. Manohar, K.M. Pandey, S.R. Maity, Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques, Ceram. Int. (2021). DOI: https://doi.org/10.1016/j.ceramint.2021.02.073
- [12] V.S.S. Venkatesh, A.B. Deoghare, Fabrication and mechanical behaviour of Al-Kaoline metal matrix composite fabricated through powder metallurgy technique, in: Mater. Today Proc., Elsevier Ltd 3291-3296 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.10.021
- [13] N. Nemati, R. Khosroshahi, M. Emamy, A. Zolriasatein, Investigation of microstructure, hardness and wear properties of Al-4.5wt.% Cu-TiC nanocomposites produced by mechanical milling, Mater. Des. 32, 3718-3729 (2011). DOI: https://doi.org/10.1016/j.matdes.2011.03.056
- [14] M. Bhattacharya, T. Basak, A review on the susceptor assisted microwave processing of materials, Energy 97, 306-338 (2016). DOI: https://doi.org/10.1016/j.energy.2015.11.034
- [15] P. Deb, A.B. Deoghare, A. Borah, E. Barua, S. Das Lala, Scaffold Development Using Biomaterials: A Review, Mater. Today Proc. 5, 12909-12919 (2018). DOI: https://doi.org/10.1016/j.matpr.2018.02.276
- [16] P. Deb, E. Barua, S. Das Lala, A.B. Deoghare, Synthesis of hydroxyapatite from Labeo rohita fish scale for biomedical application, Mater. Today Proc. 15, 277-283 (2019). DOI: https://doi.org/10.1016/j.matpr.2019.05.006
- [17] V.S.S. Venkatesh, A.B. Deoghare, Modelling and Optimisation of Wear Parameters for Spark Plasma Sintered Al - SiC - Kaoline Hybrid Composite Modelling and Optimisation of Wear Parameters for Spark Plasma Sintered Al - SiC - Kaoline Hybrid Composite, Adv. Mater. Process. Technol. 1-19 (2021). DOI: https://doi.org/10.1080/2374068X.2021.1939561
- [18] M.R. Mattli, A. Shakoor, P.R. Matli, A.M.A. Mohamed, Microstructure and compressive behavior of Al.-Y2O3 nanocomposites prepared by microwave-assisted mechanical alloying, Metals (Basel). 9 (2019). DOI: https://doi.org/10.3390/met9040414
- [19] A. Manuscript, R. Society, A. Manuscripts, T.A. Manuscript, A. Manuscripts, R. Society, A. Manuscript, RSC Advances, (n.d.).
- [20] S. Das Lala, E. Barua, P. Deb, A.B. Deoghare, Physico-chemical and biological behaviour of eggshell bio-waste derived nano-hydroxyapatite matured at different aging time, Mater. Today Commun. 27, 102443 (2021). DOI: https://doi.org/10.1016/j.mtcomm.2021.102443.
- [21] V.S.S. Venkatesh, A.B. Deoghare, Effect of microwave sintering on the mechanical characteristics of Al / kaoline / SiC hybrid composite fabricated through powder metallurgy techniques MAS, Mater. Chem. Phys. 287, 126276 (2022). DOI: https://doi.org/10.1016/j.matchemphys.2022.126276
- [22] Z. Zhou, B. Liu, W. Guo, A. Fu, H. Duan, W. Li, Corrosion behavior and mechanism of FeCrNi medium entropy alloy prepared by powder metallurgy, J. Alloys Compd. 867, 159094 (2021). DOI: https://doi.org/10.1016/j.jallcom.2021.159094
- [23] F. Toptan, A. Kilicarslan, A. Karaaslan, M. Cigdem, I. Kerti, Processing and microstructural characterisation of AA1070 and AA6063 matrix B4Cp reinforced composites, Mater. Des. 31, S87-S91 (2010). DOI: https://doi.org/10.1016/j.matdes.2009.11.064
- [24] K. Ravi Kumar, K. Kiran, V.S. Sreebalaji, Microstructural characteristics and mechanical behaviour of aluminium matrix composites reinforced with titanium carbide, J. Alloys Compd. 723, 795-801 (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.06.309
- [25] V.S.S. Venkatesh, A.B. Deoghare, Effect of boron carbide and kaoline reinforcements on the microstructural and mechanical characteristics of aluminium hybrid metal matrix composite fabricated through powder metallurgy technique, Adv. Mater. Process. Technol. 8, 1007-1028 (2021). DOI: https://doi.org/10.1080/2374068X.2021.1945314
- [26] H. Alihosseini, K. Dehghani, J. Kamali, Microstructure characterization, mechanical properties, compressibility and sintering behavior of Al-B4C nanocomposite powders, Adv. Powder Technol. 28, 2126-2134 (2017). DOI: https://doi.org/10.1016/j.apt.2017.05.019
- [27] K. Rahmani, G.H. Majzoobi, The effect of particle size on microstructure, relative density and indentation load of Mg-B4C composites fabricated at different loading rates, J. Compos. Mater. 54, 2297-2311 (2020). DOI: https://doi.org/10.1177/0021998319896009
- [28] C.A.V. Kumar, J.S. Rajadurai, Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy, Trans. Nonferrous Met. Soc. China (English Ed. 26, 63-73 (2016). DOI: https://doi.org/10.1016/S1003-6326(16)64089-X
- [29] J. David Raja Selvam, D.S. Robinson Smart, I. Dinaharan, Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminum alloy composites prepared by compocasting, Mater. Des. 49, 28-34 (2013). DOI: https://doi.org/10.1016/j.matdes.2013.01.053
- [30] Sudarshan, M.K. Surappa, Synthesis of fly ash particle reinforced A356 Al composites and their characterization, Mater. Sci. Eng. A. 480, 117-124 (2008). DOI: https://doi.org/10.1016/j.msea.2007.06.068
- [31] V.S.S. Venkatesh, A.B. Deoghare, Fabrication and mechanical behaviour of Al-Kaoline metal matrix composite fabricated through powder metallurgy technique, Mater. Today Proc. 38, 3291-3296 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.10.021
- [32] A. Baradeswaran, A. Elayaperumal, R. Franklin Issac, A statistical analysis of optimization of wear behaviour of Al-Al2O3 composites using taguchi technique, Procedia Eng. 64, 973-982 (2013). DOI: https://doi.org/10.1016/j.proeng.2013.09.174
- [33] I. Balasubramanian, R. Maheswaran, Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites, Mater. Des. 65, 511-520 (2015). DOI: https://doi.org/10.1016/j.matdes.2014.09.067
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ad122c2-65f4-40a4-83f9-43d9d9392251