PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of process parameters of friction stir welded AA5082-AA7075 butt joints using resonance fatigue properties

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, experiments were carried out to quantify the behaviour of friction stir welded (FSW) AA5082-AA7075 butt joints under tensile loading and completely reversed fatigue loading. Different samples were prepared to identify optimum tool rotational and travel speeds to produce FSW AA5082-AA7075 butt joints with the maximum fatigue life. ANOVA was performed, which confirmed that both tool speed nad tool rotation speed affect the tensile strength of the weld. The samples exhibit a considerable difference in their fatigue life and tensile strenght. This difference can be accounted to the presence of welding defects such as surface defects and porosity. S-N curve plotted for the sample shows a significantly high fatigue life at the lower stress ranges. Fracture surfaces were also analysed under scanning electron microscope (SEM). Study of the fracture surface of the sample that failed under fatigue loading showed that the surface was mainly divided in two zones. The first zone was the area of fatigue crack growth where each stress cycle, slowly and gradually, helped in the growth of crack. The second zone was the region of fast fracture where the crack growth resulted in the failure of the joint instantaneously. The fracture surface study of the sample that failed under tensile loading showed that the mode of failure was ductile in nature.
Rocznik
Strony
99--108
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
  • Mechanical Engineering Department, Birla Institute of Technology
autor
  • Mechanical Engineering Department, Birla Institute of Technology
autor
  • Mechanical Engineering Department, Birla Institute of Technology
Bibliografia
  • [1] Y. Bozkurt, S. Salman and G. Çam, “Effect of welding parameters on lap shear tensile properties of dissimilar friction stir spot welded AA 5754-H22/2024-T3 joints”, Science and Technology of Welding and Joining 18 (4), 337–345 (2013).
  • [2] G. Çam, “Friction stir welded structural materials: beyond Al-alloys”, International Materials Reviews 56 (1), 1–48 (2011).
  • [3] G. Çam, S. Güçlüer, A. Çakan, and H. Serindag, “Mechanical properties of friction stir butt-welded Al-5086 H32 plate, Materialwissenschaft und Werkstofftechnik: Entwicklung, Fertigung, Prüfung”, Eigenschaften und Anwendungen technischer Werkstoffe 40 (8), 638–642 (2009).
  • [4] G. Çam and G. İpekoğlu, “Recent developments in joining of aluminum alloys”, The International Journal of Advanced Manufacturing Technology 91 (5-8), 1851–1866 (2017).
  • [5] G. Çam, G. İpekoğlu, T. Küçükömeroğlu, and S. Aktarer, “Applicability of friction stir welding to steels”, Journal of Achievements in Materials and Manufacturing Engineering 80 (2), 65–85 (2017).
  • [6] G. Çam, G. İpekoğlu, and H. Tarık Serindağ, “Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints”, Science and Technology of Welding and Joining 19 (8), 715–720 (2014).
  • [7] G. Çam and M. Koçak, “Microstructural and mechanical characterization of electron beam welded Al-alloy 7020”, Journal of Materials Science 42 (17), 7154–7161 (2007).
  • [8] G. Çam and S. Mistikoglu, “Recent developments in friction stir welding of Al-alloys”, Journal of Materials Engineering and Performance 23 (6), 1936–1953 (2014).
  • [9] G. Çam, V. Ventzke, J. Dos Santos, M. Koçak, G. Jennequin, and P. Gonthier-Maurin, “Characterisation of electron beam welded aluminium alloys”, Science and Technology of Welding and Joining 4 (5), 317–323 (1999).
  • [10] G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, M. Penasa, C. Rivela, and D. Boisselier, “Characterization of Laser and Electron Beam Welded Al Alloys, harakterisierung von laser-und elektronenstrahlgeschweißten Aluminiumlegierungen”, Prakt. Metallogr 36 (2), 59–89 (1999).
  • [11] P. Cavaliere, A. De Santis, F. Panella, and A. Squillace, “Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding”, Materials & Design 30 (3), 609–616 (2009).
  • [12] L. Ceschini, I. Boromei, G. Minak, A. Morri, and F. Tarterini, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.% Al2 O3 p composite”, Composites Science and Technology 67 (3-4), 605–615 (2007).
  • [13] R. Crawford, G. Cook, A. Strauss, D. Hartman, and M. Stremler, “Experimental defect analysis and force prediction simulation of high weld pitch friction stir welding”, Science and Technology of Welding and Joining 11 (6), 657–665 (2006).
  • [14] L. Dubourg, A. Merati, and M. Jahazi, “Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin”, Materials & Design 31 (7), 3324–3330 (2010).
  • [15] A. E466-15, “Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials”, ASTM International, West Conshohocken, PA (2015).
  • [16] A. E. E8M-13, “Standard Test Methods for Tension Testing of Metallic Materials”, ASTM International, West Conshohocken, PA (2013).
  • [17] M. Ericsson and R. Sandström, “Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG”, International Journal of Fatigue 25 (12), 1379–1387 (2003).
  • [18] A. Feng, D. Chen, and Z. Ma, “Microstructure and cyclic deformation behavior of a friction-stir-welded 7075 Al alloy”, Metallurgical and Materials Transactions A 41 (4), 957–971 (2010).
  • [19] J. Guo, H. Chen, C. Sun, G. Bi, Z. Sun, and J. Wei, “Friction stir welding of dissimilar materials between AA6061 and AA7075 al alloys effects of process parameters”, Materials & Design (1980–2015) 56, 185–192 (2014).
  • [20] V. Infante, D. Braga, F. Duarte, P. Moreira, M. De Freitas, and P. De Castro, “Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding”, International Journal of Fatigue 82 (2), 310–316 (2016).
  • [21] G. İpekoğlu and G. Çam, “Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction-stir-welded joints between AA7075 and AA6061 aluminum alloys”, Metallurgical and Materials Transactions A 45 (7), 3074–3087 (2014).
  • [22] G. İpekoğlu, S. Erim, and G. Çam, “Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt-welded AA7075 Al alloy plates”, The International Journal of Advanced Manufacturing Technology 70 (1-4), 201–213 (2014).
  • [23] G. İpekoğlu, S. Erim, and G. Çam, “Investigation into the influence of post-weld heat treatment on the friction stir welded AA6061 Al-alloy plates with different temper conditions”, Metallurgical and Materials Transactions A 45 (2), 864–877 (2014).
  • [24] G. İpekoğlu, S. Erim, B.G. Kıral, and G. Çam, “Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates”, Kovove Mater 51 (3), 155–163 (2013).
  • [25] G. İpekoğlu, B.G. Kıral, S. Erim, and G. Çam, “Investigation of the effect of temper condition on friction stir weldability of AA7075 Al-alloy plates”, Material and Technology 46 (6), 627–632 (2012).
  • [26] S. Jannet, P. Mathews, and R. Raja, “Comparative investigation of friction stir welding and fusion welding of 6061 T6 – 5083 O aluminum alloy based on mechanical properties and microstructure”, Bull. Pol. Ac.: Tech. 62 (4), 791–795 (2014).
  • [27] N. Kashaev, V. Ventzke, and G. Çam, “Prospects of laser beam welding and friction stir welding processes for aluminium airframe structural applications”, Journal of Manufacturing Processes 36, 571–600 (2018).
  • [28] Y. Kim, H. Fujii, T. Tsumura, T. Komazaki, and K. Nakata, “Three defect types in friction stir welding of aluminum die casting alloy”, Materials Science and Engineering: A 415 (1-2), 250–254 (2006).
  • [29] İ. Küçükrendeci, “Mechanical and microstructural properties of EN AW-6060 aluminum alloy joints produced by friction stir welding”, Bull. Pol. Ac.: Tech. 63 (2), 475–478 (2015).
  • [30] İ. Küçükrendeci, “The investigation of suitable welding parameters in polypropylene sheets joined with friction stir welding”, Bull. Pol. Ac.: Tech. 67 (1), 133–140 (2019).
  • [31] G. Krolczyk, J. Krolczyk, R. Maruda, S. Legutko, and M. Tomaszewski, “Metrological changes in surface morphology of high-strength steels in manufacturing processes”, Measurement 88, 176–185 (2016).
  • [32] G. Krolczyk, P. Nieslony, and S. Legutko, “Determination of tool life and research wear during duplex stainless steel turning”, Archives of Civil and Mechanical Engineering 15 (2), 347–54 (2015).
  • [33] R. Kumar, B. Bora, S. Chattopadhyaya, G. Krolczyk, and S. Hloch, “Experimental and mathematical evaluation of thermal and tensile properties of friction stir welded joint”, International Journal of Materials and Product Technology 57 (1-3), 204–229 (2018).
  • [34] R. Kumar, S. Chattopadhyaya, S. Hloch, G. Krolczyk, and S. Legutko, “Wear characteristics and defects analysis of friction stir welded joint of aluminium alloy 6061-T6”, Eksploatacjaniezawodność – Maintenance and Reliability 18 (1), 128–135 (2016).
  • [35] R.M. Leal and A. Loureiro, “Defects formation in friction stir welding of aluminium alloys”, In: Materials Science Forum 455, 299–302 (2004).
  • [36] C.Y. Lee, W.B. Lee, J.W. Kim, D.H. Choi, Y.M. Yeon, and S.B. Jung, “Lap joint properties of FSWed dissimilar formed 5052 Al and 6061 Al alloys with different thickness”, Journal of Materials Science 43 (9), 3296–3304 (2008).
  • [37] W. Miller, L. Zhuang, J. Bottema, A. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge, “Recent development in aluminium alloys for the automotive industry”, Materials Science and Engineering: A 280 (1), 37– 49 (2000).
  • [38] R.S. Mishra and Z.Y. Ma, “Friction stir welding and processing”, Materials Science and Engineering: R: Reports 50 (1-2), 1–78 (2005).
  • [39] J. Mononen, M. Sirèn, and H. Hänninen, “Cost comparison of FSW and MIG welded aluminium panels”, Welding in the World 47 (11-12), 32–35 (2003).
  • [40] R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, “Recent advances in friction-stir welding–process, weldment structure and properties”, Progress in Materials Science 53 (6), 980–1023 (2008).
  • [41] M. Pakdil, G. Çam, M. Koçak, and S. Erim, “Microstructural and mechanical characterization of laser beam welded AA6056 Al-alloy”, Materials Science and Engineering: A 528 (24), 7350–7356 (2011).
  • [42] R.J. Parrington, “Fractography of metals and plastics”, Practical Failure Analysis 2 (5), 16–19 (2002).
  • [43] H.M. Rao, J.B. Jordon, B. Ghaffari, X. Su, A.K. Khosrovaneh, M.E. Barkey, W. Yuan, and M. Guo, “Fatigue and fracture of friction stir linear welded dissimilar aluminum-to-magnesium alloys”, International Journal of Fatigue 82 (3), 737–747 (2016).
  • [44] R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing, and L. Garcia, “Low-cycle fatigue of dissimilar friction stir welded aluminum alloys”, Materials Science and Engineering: A 654, 236–248 (2016).
  • [45] S.W. Song, B.C. Kim, T.J. Yoon, N.K. Kim, I.B. Kim, and C.Y. Kang, “Effect of welding parameters on weld formation and mechanical properties in dissimilar Al alloy joints by FSW”, Materials Transactions 51 (7), 1319–1325 (2010).
  • [46] W. Thomas, “Friction stir joining of aluminium alloys”, TWI Bull 6, 124–127 (1995).
  • [47] W. Thomas, “Friction stir process welds aluminium alloys”, Weld Journal 41–45 (1996).
  • [48] W. Thomas, E. Nicholas, J. Needham, M. Murch, P. Temple-Smith, and C. Dawes, “Friction Stir Butt Welding, International Patent Appl. n. PCT/GB92/02203 and GB Patent Appl. n. 9125978.8. US Patent, (5,460,317)”, (1991).
  • [49] W. Thomas, P. Threadgill, and E. Nicholas, “Feasibility of friction stir welding steel”, Science and Technology of Welding and Joining 4 (6), 365–372 (1999).
  • [50] Y. Uematsu, Y. Tozaki, K. Tokaji, and M. Nakamura, “Fatigue behavior of dissimilar friction stir welds between cast and wrought aluminum alloys”, Strength of Materials 40 (1), 138–141 (2008).
  • [51] W. Więckowski, P. Lacki, and J. Adamus, “Examinations of steel overlap joints obtained using the friction stir welding technology”, Arch. Metall. Mater. 64 (1), 393–399 (2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0acc2497-4852-42d3-98bf-8754dd4e12b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.