Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article presents a comprehensive acoustic study of paper-based building products: cellulose wool,paperboard, corrugated cardboard, and honeycomb panels. The material configurations included the intact form as well as the various modifications, i.e., density variation, multiple-layered staking, perforation or acoustic metamaterial setup. Tests covered acoustic absorption and insulation properties, with the last examined under excitation of both a plane wave and a diffused field. Additionally, the cellulose wool is provided with the characteristic impedance and propagation wavenumber results; and the paperboard was tested for its dynamic elastic and damping properties. The paper-based products, giving their weight, prove to be a convincing replacement for conventional materials by both absorptive and insulation performance. The maximum acquired sound reduction index, for exceptionally lightweight (2.2 kg/m^2) paper double-wall metamaterial structure, reached 26 dB.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
369--383
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr.
Twórcy
autor
- Department of Acoustics, Multimedia and Signal Processing, Wrocław University of Science and Technology Poland
autor
- Department of Architecture and Visual Arts, Wrocław University of Science and Technology Poland
autor
- Department of Acoustics, Multimedia and Signal Processing, Wrocław University of Science and Technology; KFB Acoustics Poland
autor
- Department of Acoustics, Multimedia and Signal Processing, Wrocław University of Science and Technology Poland
Bibliografia
- 1. Abd Rashid A.F., Yusoff S. (2015), A review of life cycle assessment method for building industry, Renewable and Sustainable Energy Reviews, 45: 244-248, doi: 10.1016/j.rser.2015.01.043.
- 2. Arenas J.P., Rebolledo J., del Rey R., Alba J. (2014), Sound absorption properties of unbleached cellulose loose-fill insulation material, BioResources, 9(4): 6227-6240, doi: 10.15376/biores.9.4.6227-6240.
- 3. Asdrubali F., Pisello A.L., D’Alessandro F., Bianchi F., Cornicchia M., Fabiani C. (2015), Innovative cardboard based panels with recycled materials from the packaging industry: Thermal and acoustic performance analysis, Energy Procedia, 78: 321-326, doi: 10.1016/j.egypro.2015.11.652.
- 4. ASTM E756-05 (2005), Standard test method for measuring vibration-damping properties of materials, ASTM Standards (Reapproved 2017).
- 5. ASTM E2611-19 (2019), Standard test method for normal incidence determination of porous material acoustical properties based on the transfer matrix method, ATM International.
- 6. Cripps A. (2004), Cardboard as a construction material: A case study, Building Research & Information, 32(3): 207-219, doi: 10.1080/09613210410001686273.
- 7. Cox T.J., D’Antonio P. (2016), Acoustic Absorbers and Diffusers: Theory, Design and Application, 3rd ed., pp. 91-131, Spon Press.
- 8. Diarte J., Shaffer M. (2021), Cardboard architecture. Eight decades of exploration in academic research and professional practice 1940-2019, Enquiry The ARCC Journal for Architectural Research, 18(1): 17-40, doi: 10.17831/enqarcc.v18i1.1103.
- 9. International Organization for Standardization (2000), Acoustics. Measurement of sound insulation in buildings and of building elements using sound intensity. Part 1: Laboratory measurements, (ISO Standard No. 15186-1:2000), https://www.iso.org/standard/26097.html.
- 10. Jasiołek A., Noszczyk P., Łatka J.F. (2023), Paper-based building envelopes – Thermal and environmental properties of original envelope designs, Energy and Buildings, 289: 113062, doi: 10.1016/j.enbuild.2023.113062.
- 11. Kang C.-W., Kim M.K., Jang E.-S. (2021), An experimental study on the performance of corrugated cardboard as a sustainable sound-absorbing and insulating material, Sustainability, 13(10): 5546, doi: 10.3390/su13105546.
- 12. Klemm D., Heublein B., Fink H.P., Bohn A. (2005), Cellulose: Fascinating biopolymer and sustainable raw material, Angewandte Chemie – International Edition, 44(22): 3358-3393, doi: 10.1002/anie.200460587.
- 13. Knaack U., Bach R., Schabel S. [Eds.] (2023), Building with Paper Architecture and Construction, Birkhäuser.
- 14. Langfeldt F., Hoppen H., Gleine W. (2020), Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators, Journal of Sound and Vibration, 476: 115309, doi: 10.1016/j.jsv.2020.115309.
- 15. Latka J.F. (2017a), House of Cards – design and implementation of a paper house prototype, [in:] Interfaces: Architecture. Engineering. Science, pp. 1-10.
- 16. Latka J.F. (2017b), Paper in Architecture: Research by Design, Engineering and Prototyping, A+BE |Architecture and the Built Environment.
- 17. Łatka J.F. et al. (2022), Properties of paper-based products as a building material in architecture – An interdisciplinary review, Journal of Building Engineering, 50: 104135, doi: 10.1016/j.jobe.2022.104135.
- 18. Miyake R., Luna I., Gould L.A. [Eds.] (2009), Shigeru Ban: Paper in Architecture, Rizzoli International Publications.
- 19. Neri M., Levi E., Cuerva E., Pardo-Bosch F., Zabaleta A.G., Pujadas P. (2021), Sound absorbing and insulating low-cost panels from end-of-life household materials for the development of vulnerable contexts in circular economy perspective, Applied Sciences, 11(12): 5372, doi: 10.3390/app11125372.
- 20. Niskanen K. [Ed.] (2011), Mechanics of Paper Products, De Gruyter, doi: 10.1515/9783110254631.
- 21. Ricciardi P., Belloni E., Cotana F. (2014), Innovative panels with recycled materials: Thermal and acoustic performance and Life Cycle Assessment, Applied Energy, 134: 150-162, doi: 10.1016/j.apenergy.2014.07.112.
- 22. Schönwälder J., Rots J.G. (2008), Mechanical behaviour of cardboard in construction, Cardboard in Architecture, 7: 131, doi: 10.3233/978-1-58603-820-5-131.
- 23. Secchi S., Asdrubali F., Cellai G., Nannipieri E., Rotili A., Vannucchi I. (2016), Experimental and environmental analysis of new sound-absorbing and insulating elements in recycled cardboard, Journal of Building Engineering, 5: 1-12, doi: 10.1016/j.jobe.2015.10.005.
- 24. Wang Y., Jiang Z., Li L., Qi Y., Sun J., Jiang Z. (2023), A bibliometric and content review of carbon emission analysis for building construction, Buildings, 13(1): 1-22, doi: 10.3390/buildings13010205.
- 25. Wolf A., Rebecca B., Nihat K., Knaack U., Wilfinger M. (2021), A full performance paper house, Journal of Facade Design and Engineering, 9(1): 117-130, doi: 10.7480/jfde.2021.1.5533.
- 26. Zabalza Bribián I., Valero Capilla A., Aranda Usón A. (2011), Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential, Building and Environment, 46(5): 1133-1140, doi: 10.1016/j.buildenv.2010.12.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0aca0ec4-c815-4133-a5a7-ef8fa38bed8b