PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ nanokrzemionki o zróżnicowanej morfologii na właściwości mechaniczne zapraw cementowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The influence of nanosilica with different morphology on the mechanical properties of cement mortars
Języki publikacji
PL EN
Abstrakty
PL
Praca przedstawia wyniki badań wpływu dodatku dwóch rodzajów nano-SiO2: bez porowatej warstewki wokół jądra (n-SiO2) i z tą warstewką (m-SiO2) na wytrzymałość zapraw z cementu portlandzkiego. Uzyskane wyniki potwierdzają, że oba dodatki zwiększają wytrzymałość zapraw na ściskanie i na zginanie. Największą wytrzymałość na zginanie osiągnęły zaprawy z dodatkiem wynoszącym 3% masy cementu, w przypadku obu form krzemionki. Natomiast wytrzymałość na ściskanie rosła wraz ze zwiększającym się dodatkiem n-SiO2 I największą wartość osiągnęła w przypadku 5%. Wzrost wytrzymałości na ściskanie z dodatkiem m-SiO2 był mniejszy i największą wartość osiągnęła zaprawa z 3% dodatkiem.
EN
The work is devoted to study the influence of nanosilica with (m-Si02) and without (n-Si02) mesoporous shell additions on Portland cement mortars mechanical properties. The results have shown that these additions increase the compressive and flexural strength of mortars. The highest flexural strength have the mortars with 3% addition of cement mass of both nanosilica types. However, the compressive strength was increasing with rise of n-Si02 addition and the highest was for 5% content in the mortar. The increase of compressive strength with m-Si02 was lower in comparison with n-Si02, and the highest was for 3% addition.
Czasopismo
Rocznik
Strony
24--32
Opis fizyczny
Bibliogr. 29 poz., il., tab.
Twórcy
  • Katedra Konstrukcji Żelbetowych i Technologii Betonu, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
autor
  • Instytut Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
  • Instytut Technologii Chemicznej Nieorganicznej i Inżynierii Środowiska, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
autor
  • Katedra Konstrukcji Żelbetowych i Technologii Betonu, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
autor
  • Katedra Konstrukcji Żelbetowych i Technologii Betonu, Zachodniopomorski Uniwersytet Technologiczny, Szczecin
Bibliografia
  • 1. A. Nazari, R. Shadi, Wpływ nanocząstek TiO2 na właściwości samozagęszczającego się betonu, Cement Wapno Beton, 78, 3, 167 (2011).
  • 2. N. Ali, K. Gholamreza, R. Shadi, K. M. Javad, Wpływ nano-Al2O3 na właściwości betonu z granulowanym żużlem wielkopiecowym, Cement Wapno Beton, 78, 6, 311 (2011).
  • 3. A. Nazari, Wspomagane komputerowo prognozowanie fizycznych właściwości betonu o wysokiej wytrzymałości, zawierającego nanocząstki Fe2O3, Cement Wapno Beton, 79, 5, 265 (2012).
  • 4. Y. Deng at al., Superparamagnetic High-Magnetization Microspheres with an Fe3O4 at SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. Journal of American Chemical Society, 130, 28-29 (2008).
  • 5. A. N. Givi et al, The effects of lime solution on the properties of SiO2 nanoparticles binary blended concrete. Composites: Part B, 42, 562–569 (2011).
  • 6. B. J. Jankiewicz i in., Nanostruktury krzemionkowo-metaliczne. Cz. I. Otrzymywanie i modyfikacja nanocząstek krzemionkowych. Wiadomości Chemiczne, 11-12, 913-1097 (2010).
  • 7. T. Ji, Preliminary study on the water permeability and microstructure of concrete incorporating nano-SiO2. Cement and Concrete Research, 35, 1943–1947 (2005).
  • 8. B.-W. Jo et al, Characteristics of cement mortar with nano-SiO2 particles. Construction and Building Materials, 21, 1351–1355 (2007).
  • 9. M. Khanzadi, Influence of Nano-Silica Particles on Mechanical Properties and Permeability of Concrete. 2nd International Conference on Sustainable Construction Materials and Technologies. June 28-30, Ancona, Italy, (2010).
  • 10. G. Li: Properties of high-volume fly ash concrete incorporating nano-SiO2. Cement and Concrete Research, 34, 1043–1049 (2004).
  • 11. H. Li et al., Microstructure of cement mortar with nano-particles. Composites: Part B, 35, 185–189 (2004).
  • 12. H. Li, H. Xiao, J. Ou, A study on mechanical and pressure-sensitive properties of cement mortar with nanophase materials. Cement and Concrete Research, 34, 435–438 (2004).
  • 13. D.F. Lin et al, Improvements of nano-SiO2 on sludge/fly ash mortar, Waste Management, 28, 1081–1087 (2008).
  • 14. M. Ltifi et al, Experimental study of the effect of addition of nano-silica on the behaviour of cement mortars. Procedia Engineering, 10, 900–905 (2011).
  • 15. S. P. Naika et al, Room temperature synthesis of nanoporous silica spheres and their formation mechanism. Solid State Communications, 114, 437-440 (2007).
  • 16. A. Nazari, S. Riahi, The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete, Composites Part B, 42, 570-578 (2011).
  • 17. C. Ozyildrim, C. Zegetosky, Laboratory Investigation of Nanomaterials to Improve the Permeability and Strength of Concrete. VTRC, Charlottesville 2010, pp.18.
  • 18. Y. Qing et al, Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and Building Materials, 21, 539–545 (2007).
  • 19. G. Quercia, H.J.H. Brouwers, Application of nano-silica (nS) in concrete mixtures 8th fib PhD Symposium in Kgs. Lyngby, Denmark, 1-6 (2010).
  • 20. A. Sadrmomtazi. A. Barzegar, Assessment of the effect of Nano-SiO2 on physical and mechanical properties of self-compacting concrete containing rice husk ash. 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, June 28-30, Italy, 1-9 (2010).
  • 21. A. Sadrmomtazi, A. Fasihi, Investigation of mechanical and physical properties of mortars containing silica fume and nano-SiO2. 3rd International Conference on Concrete & Development. April 27-29, Tehran, Iran, 1153-1161 (2009).
  • 22. L. Senf et al, Mortars with nano-SiO2 and micro-SiO2 investigated by experimental design. Construction and Buildings Materials, 24, 1432–1437 (2010).
  • 23. K. Sobolev, M. Ferrada-Gutiérrez M. How nanotechnology can change the concrete world: part 2. American Ceramic Society Bulletin, 84, 11, 16-19 (2005).
  • 24. K. Sobolev, I. Flores and R. Hermosillo, Nanomaterials and Nanotechnology for High-performance Cement Composites. Proceedings of ACI Session on „Nanotechnology of Concrete: Recent Developments and Future Perspectives”, November 7, Denver, USA, 91-118 (2006).
  • 25. K. Sobolev et al, Development of nano-SiO2 based admixtures for high-performance cement-based materials, Progress report, CONACYT, Mexico, 2006.
  • 26. M. Stefanidou, I. Papayianni, Influence of nano-SiO2 on the Portland cement pastes. Composites: Part B, 43, 2706-2710 (2012).
  • 27. W. H. Suh et al, Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiology, 87, 133-170 (2009).
  • 28. T. Yokoi et al, Periodic Arrangament of Silica Nanospheres Assisted by Amino Acids. Journal of American Chemical Society, 128 (42), 13664–13665 (2006).
  • 29. I. Zyganitidis, et al, Nanomechanical characterization of cement-based pastes enriched with SiO2 nanoparticles. Material Sciences Engineering Part B, 176, 1580–1584 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ac99f13-77e7-49fb-8c3b-c0e05db4161f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.