PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D morphological reconstruction of the red blood cell based on two phase images

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As an important component of blood cells, the red blood cell plays a vital role in many diseases such as malaria and so on. Although quantitative phase imaging techniques can be used for homogeneous cellular thickness distribution to obtain ideal results, they cannot achieve 3D morphological distribution. In this paper, a new method is presented to get a 3D morphology image of red blood cell. With this method, only two cellular quantitative phase images obtained from two orthogonal directions are needed as original information. By using the grid method, the sample is divided into many small phase cubes, and then we take a layer’s cubes into calculation so that the 3D problem could be transformed into a 2D problem to elaborate. Then it can be applied to the tomographic imaging combined with the maximum entropy method according to the two orthogonal phase images. This method has been proved by a simulation of red blood cell. The results show that cellular morphological distribution can be achieved in detail very well just based on only two orthogonal phase images.
Czasopismo
Rocznik
Strony
173--182
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
  • Faculty of Science, Jiangsu University, Zhenjiang 212013, China
autor
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
autor
  • Faculty of Science, Jiangsu University, Zhenjiang 212013, China
autor
  • School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
autor
  • Faculty of Science, Jiangsu University, Zhenjiang 212013, China
Bibliografia
  • [1] POPESCU G., Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill Professional, 2011.
  • [2] KYEOREH LEE, KYOOHYUN KIM, JAEHWANG JUNG, JIHAN HEO, SANGYEON CHO, SANGYUN LEE, GYUYOUNG CHANG, YOUNGJU JO, HYUNJOO PARK AND YONGKEUN PARK, Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications, Sensors 13(4), 2013, pp. 4170–4191.
  • [3] MARQUET P., RAPPAZ B., MAGISTRETTI P.J., CUCHE E., EMERY Y., COLOMB T., DEPEURSINGE C., Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy, Optics Letters 30(5), 2005, pp. 468–470.
  • [4] CUCHE E., BEVILACQUA F., DEPEURSINGE C., Digital holography for quantitative phase-contrast imaging, Optics Letters 24(5), 1999, pp. 291–293.
  • [5] POPESCU G., DEFLORES L.P., VAUGHAN J.C., BADIZADEGAN K., IWAI H., DASARI R.R., FELD M.S., Hilbert phase microscopy for investigating fast dynamics in transparent systems, Optics Letters 29(21), 2004, pp. 2503–2505.
  • [6] IKEDA T., POPESCU G., DASARI R.R., FELD M.S., Hilbert phase microscopy for investigating fast dynamics in transparent systems, Optics Letters 30(10), 2005, pp. 1165–1167.
  • [7] POPESCU G., IKEDA T., DASARI R.R., FELD M.S., Diffraction phase microscopy for quantifying cell structure and dynamics, Optics Letters 31(6), 2006, pp. 775–777.
  • [8] YONGKEUN PARK, DIEZ-SILVA M., POPESCU G., LYKOTRAFITIS G., WONSHIK CHOI, FELD M.S., SURESH S., Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum, Proceedings of the National Academy of Sciences of the United States of America 105(37), 2008, pp. 13730–13735.
  • [9] CHANDRAMOHANADAS R., YONGKEUN PARK, LUI L., ANG LI, QUINN D., LIEW K., DIEZ-SILVA M., YONGJIN SUNG, MING DAO, CHWEE TECK LIM, PREISER P.R., SURESH S., Biophysics of malarial parasite exit from infected erythrocytes, PLoS ONE 6, 2011, article e20869.
  • [10] KYOOHYUN KIM, KYUNG SANG KIM, HYUNJOO PARK, JONG CHUL YE, YONGKEUN PARK, Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography, Optics Express 21(26), 2013, pp. 32269–32278.
  • [11] YOUNGCHAN KIM, HYOEUN SHIM, KYOOHYUN KIM, HYUNJOO PARK, SEONGSOO JANG, YONGKEUN PARK, Profiling individual human red blood cells using common-path diffraction optical tomography, Scientific Reports 4, 2014, article 6659.
  • [12] LAUER V., New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope, Journal of Microscopy 205(2), 2002, pp. 165–176.
  • [13] KYOOHYUN KIM, HYEOK YOON, DIEZ-SILVA M., MING DAO, DASARI R.R., YONGKEUN PARK, High- -resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography, Journal of Biomedical Optics 19(1), 2014, article 011005.
  • [14] TAEWOO KIM, RENJIE ZHOU, MIR M., DERIN BABACAN S., SCOTT CARNEY P., GODDARD L.L., POPESCU G., White-light diffraction tomography of unlabelled live cells, Nature Photonics 8(3), 2014, pp. 256–263.
  • [15] KYOOHYUN KIM, ZAHID YAQOOB, KYEOREH LEE, JEON WOONG KANG, YOUNGWOON CHOI, POORYA HOSSEINI, SO P.T.C., YONGKEUN PARK, Diffraction optical tomography using a quantitative phase imaging unit, Optics Letters 39(24), 2014, pp. 6935–6938.
  • [16] COTTE Y., TOY F., JOURDAIN P., PAVILLON N., BOSS D., MAGISTRETTI P., MARQUET P., DEPEURSINGE C., Marker-free phase nanoscopy, Nature Photonics 7(2), 2013, pp. 113–117.
  • [17] WONSHIK CHOI, FANG-YEN C., BADIZADEGAN K., SEUNGEUN OH, NIYOM LUE, DASARI R.R., FELD M.S., Tomographic phase microscopy, Nature Methods 4(9), 2007, pp. 717–719.
  • [18] CHARRIÈRE F., MARIAN A., MONTFORT F., KUEHN J., COLOMB T., CUCHE E., MARQUET P., DEPEURSINGE C., Cell refractive index tomography by digital holographic microscopy, Optics Letters 31(2), 2006, pp. 178–180.
  • [19] BARBEY N., GUENNOU C., AUCHÈRE F., TomograPy: a fast, instrument-independent, solar tomography software, Solar Physics 283(1), 2013, pp. 227–245.
  • [20] SHINGYU LEUNG, HONGKAI ZHAO, A grid based particle method for evolution of open curves and surfaces, Journal of Computational Physics 228(20), 2009, pp. 7706–7728.
  • [21] SHINGYU LEUNG, LOWENGRUB J., HONGKAI ZHAO, A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion, Journal of Computational Physics 230(7), 2011, pp. 2540–2561.
  • [22] HACKBUSCH W., MITTELMANN H.D., On multi-grid methods for variational inequalities, Numerische Mathematik 42(1), 1983, pp. 65–76.
  • [23] HACKBUSCH W., The frequency decomposition multi-grid method, Numerische Mathematik 56(2–3), 1989, pp. 229–245.
  • [24] YONGJIN SUNG, WONSHIK CHOI, FANG-YEN C., BADIZADEGAN K., DASARI R.R., FELD M.S., Optical diffraction tomography for high resolution live cell imaging, Optics Express 17(1), 2009, pp. 266–277.
  • [25] EIJI NISHIBORI, TADAKATSU OGURA, SHINOBU AOYAGI, MAKOTO SAKATA, Ab initio structure determination of a pharmaceutical compound, prednisolone succinate, from synchrotron powder data by combination of a genetic algorithm and the maximum entropy method, Journal of Applied Crystallography 41(2), 2008, pp. 292–301.
  • [26] SÖDERBERG K., YOSHIKI KUBOTA, NORIHIRO MUROYAMA, GRÜNER D., ARISA YOSHIMURA, OSAMU TERASAKI, Electron charge distribution of CaAl2−xZnx: maximum entropy method combined with Rietveld analysis of high-resolution-synchrotron X-ray powder diffraction data, Journal of Solid State Chemistry 181(8), 2008, pp. 1998–2005.
  • [27] BARDUCCI A., GUZZI D., LASTRI C., MARCOIONNI P., NARDINO V., PIPPI I., Maximum entropy temperature–emissivity separation in the TIR spectral range using the MaxEnTES algorithm, Infrared Physics and Technology 56, 2013, pp. 12–20. 182 YAWEI WANG et al.
  • [28] PALMIERI F.A.N., CIUONZO D., Objective priors from maximum entropy in data classification, Information Fusion 14(2), 2013, pp. 186–198.
  • [29] POPESCU G., YOUNGKEUN PARK, WONSHIK CHOI, DASARI R.R., FELD M.S., KAMRAN BADIZADEGAN, Imaging red blood cell dynamics by quantitative phase microscopy, Blood Cells, Molecules and Diseases 41(1), 2008, pp. 10–16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ac8c3eb-1c6b-4c53-9095-298a41f0ab41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.