PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cyber-physical systems technologies as a key factor in the process of Industry 4.0 and smart manufacturing development

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The continuous development of production processes is currently observed in the fourth industrial revolution, where the key place is the digital transformation of production is known as Industry 4.0. The main technologies in the context of Industry 4.0 consist Cyber-Physical Systems (CPS) and Internet of Things (IoT), which create the capabili-ties needed for smart factories. Implementation of CPS solutions result in new possibilities creation – mainly in areas such as remote diagnosis, remote services, remote control, condition monitoring, etc. In this paper, authors indicated the im-portance of Cyber-Physical Systems in the process of the Industry 4.0 and the Smart Manufacturing development. Firstly, the basic information about Cyber-Physical Production Systems were outlined. Then, the alternative definitions and different authors view of the problem were discussed. Secondly, the conceptual model of Cybernetic Physical Production System was presented. Moreover, the case study of proposed solution implementation in the real manufacturing process was presented. The key stage of the verification concerned the obtained data analysis and results discussion.
Słowa kluczowe
Rocznik
Strony
84--99
Opis fizyczny
Bibliogr. 24 poz., fig., tab.
Twórcy
  • Lublin University of Technology, Lublin, Poland
  • Lublin University of Technology, Lublin, Poland
  • Lublin University of Technology, Lublin, Poland
autor
  • Slovak Academy of Sciences, Bratislava, Slovakia
  • Technical University of Kosice, Kosice, Slovakia
  • Manex s.r.o, Čaňa, Slovakia
  • Technical University of Kosice, Kosice, Slovakia
  • Technical University of Crete, Chania, Greece
  • Spojená škola Juraja Henischa, Bardejov, Slovakia
autor
  • Spojená škola Juraja Henischa, Bardejov, Slovakia
Bibliografia
  • [1] ADDI-DATA. (2015, November 18). CPS Cyber Physical Systems. https://addi-data.com/cps-cyber-physical-systems
  • [2] Al-Alia, R., Guptab, R., & Nabulsic, A. (2018). Cyber Physical Systems Role in Manufacturing Technologies. AIP Conference Proceedings, 1957, 050007. https://doi.org/10.1063/1.5034337
  • [3] ASTOR. (2020a). AS72CTR001: Instruction manual.
  • [4] ASTOR. (2020b). AS72POM300: Instruction manual.
  • [5] ASTOR. (2021). Bezprzewodowy, łatwy w integracji system monitoringu energii dla przemysłu. COMODIS. https://www.comodis.pl
  • [6] ASTRAADA. (2015). ECC22XX Ethernet Controller Compact. User’s Manual.
  • [7] Cardin, O. (2019). Classification of cyber-physical production systems applications: Proposition of an analysis framework. Computers in Industry, 104, 11–21. https://doi.org/10.1016/j.compind.2018.10.002
  • [8] Gengarle, M. V., Bensalem, S., McDermid, J., Sangiovanni-Vincentelli, A., & Törngre, M. (2013). Characteristics, Capabilities, Potential Applications of Cyber–Physical Systems: a Preliminary analysis. CyPhERS Cyber-Physical European Roadmap & Strategy (Deliverable D2.1 – CPS Domain: Initial Synthesis).
  • [9] Gola, A. (2014). Economic Aspects of Manufacturing Systems Design. Actual Problems of Economics, 156(6) 205–212.
  • [10] Gola, A., & Świć, A. (2013). Design of storage subsystem of flexible manufacturing system using the computer simulation method. Actual Problems of Economics, 142(4), 312–318.
  • [11] Harrison, R., Vera, D., Ahmad, B. (2016). Engineering Methods and Tools for Cyber–Physical Automation Systems. Proceedings of the IEEE, 104(5), 973–985. https://doi.org/10.1109/JPROC.2015.2510665
  • [12] Huebner, A., Facchi, Ch., Meyer, M., & Janicke, H. (2013). RFID systems from a cyber-physical systems perspective. Proceedings of the 11th International Workshop on Intelligent Solutions in Embedded Systems (WISES) (pp. 1–6). IEEE.
  • [13] i-SCOOP (2021). Industry 4.0 and the fourth industrial revolution explained. i-SCOOP. https://www.i-scoop.eu/industry-4-0
  • [14] Klimeš, J. (2014). Using Formal Concept Analysis for Control in Cyber-physical Systems. Procedia Engineering, 69, 1518–1522. https://doi.org/10.1016/j.proeng.2014.03.149
  • [15] Monostori, L. (2014). Cyber-physical Production Systems: Roots, Expectations and R&D Challenges. Procedia CIRP, 17, 9–13. http://doi.org/10.1016/j.procir.2014.03.115
  • [16] Onik, M. M. H., Kim, C., Yang, J. (2019). Personal Data Privacy Challenges of the Fourth Industrial Revolution. 21st International Conference on Advanced Communication Technology (ICACT) (pp. 635–638). IEEE. http://doi.org/10.23919/ICACT.2019.8701932
  • [17] Ratchev, S. (2017). Cyber-Physical Production Systems. Engineering and Physical Sciences Research Council. https://connectedeverythingmedia.files.wordpress.com/2018/06/cyber-physical-production-systems.pdf
  • [18] Sabella, R. (2018, October 2). Cyber physical systems for Industry 4.0. Ericsson. https://www.ericsson.com/en/blog/ 2018/10/cyber-physical-systems-for-industry-4.0
  • [19] Schuh, G., Potente, T., Varandani, R., Hausberg, C., & Fränken, B. (2014). Collaboration Moves Productivity to the Next Level. Procedia CIRP, 17, 3–8. http://doi.org10.1016/j.procir.2014.02.037
  • [20] Strang, D., & Anderl, R. (2014). Assembly Process driven Component Data Model in Cyber-Physical Production Systems. Proceedings of the World Congress on Engineering and Computer Science. http://www.iaeng.org/publication/WCECS2014/WCECS2014_pp947-952.pdf
  • [21] Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible Manufacturing System. Actual Problems of Economics, 141(3), 526–533.
  • [22] Szabelski, J., Krawczuk, A., & Dominczuk, J. (2014). Economic considerations of disassembly process automation. Actual Problems of Economics, 162(12), 477–485.
  • [23] Vogel-Heuser, B., Lee, J., & Leitão, P. (2015). Agents enabling cyber-physical production systems. Automatisierungstechnik, 63(10), 777–789. https://doi.org/10.1515/auto-2014-1153
  • [24] Yasniy, O., Pyndus, Y., Iasnii, V., & Lapusta, Y. (2017). Residual lifetime assessment of thermal power plant superheater header. Engineering Failure Analysis, 82, 390–403. https://doi.org/10.1016/j.engfailanal.2017.07.028
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ac27c25-5114-408e-951c-78a6b909687b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.