Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents spatial analysis and numerical methods to describe the hydrodynamic and hydrochemical conditions in a groundwater system. The research was conducted in the northern part of the Białystok High Plane, eastern Poland, within a Quaternary multi-aquifer system. Spatial analysis was used for imaging the quasi-continuous structure of the system based on a discrete set of hydrogeological data. A high-resolution regional flow model was used to identify the groundwater discharge and discharge zones of the individual aquifers. Calculations have shown a marked asymmetry of the flow system. Deeply incised river valleys in the Niemen River basin more strongly affect the groundwater than the discharge zones in the valleys of the Vistula River basin. As a result, the underground watershed in deeper aquifers is clearly shifted westward in relation to the morphological watershed. The hydrodynamic conditions of the system determined by numerical methods were used to identify the points along the groundwater flow-path for the hydrochemical study. It was the basis for the identification of points located along the groundwater flow direction, which were used in the hydrochemical study. Computational schemes of water solution models were calculated for the quasi-equilibrium state of chemical reactions between the solution and the solid and gaseous phases. Presentation of the chemical reactions allowed determining the origin of changes in the concentrations of individual components dissolved in groundwater. It was found that kaolinitization, i.e. chemical weathering of feldspars and plagioclases is the basic process that most affects the groundwater chemistry.
Czasopismo
Rocznik
Tom
Strony
509--523
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
- Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
autor
- Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
autor
- Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
autor
- Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
autor
- Institute of Hydrogeology and Engineering Geology, Faculty of Geology, University of Warsaw, Al. Żwirki i Wigury 93, PL-02-089 Warszawa, Poland
Bibliografia
- 1. Allen P.A. 2000. Earth Surface Processes. National Scientific Publishers PWN; Warsaw.
- 2. Appelo, C.A.J. and Postma, D. 1993. Geochemistry groundwater and pollution. Brookfield; Rotterdam, 1–536.
- 3. Campbell, J.B., Wynne, R.H. 2011. Introduction to Remote Sensing, 683 p. The Guilford Press; New York. [Fifth Edition]
- 4. Czekaj, J., Jakóbczyk-Karpierz, S., Rubin, H., Sitek, S. and Witkowski, A.J. (in press). Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczałkowice reservoir, Poland), Physics and Chemistry of the Earth, http://dx.doi.org/10.1016/j.pce.2015.11.005
- 5. Greskowiak, J., Hay, M.B., Prommer, H., Liu, C., Post, V.E.A., Ma, R., Davis, J.A., Zheng, C. and Zachara, J. M. 2011. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model, Water Resources Research, 47, W08501, doi:10.1029/2010WR010118. 14 pp.
- 6. Herbich, P. (Ed.). 2008. Wskazania metodyczne do opracowania warstw informacyjnych bazy danych GIS Mapy hydrogeologicznej Polski 1:50 000 „Pierwszy poziom wodonośny – wrażliwość na zanieczyszczenie i jakość wód”. PIG-PIB. Warszawa.
- 7. Jung, H.B., Charette, M.A. and Zheng, Y. 2009. A field, laboratory and modeling study of reactive transport of groundwater arsenic in a coastal aquifer, Environmental Science and Technology. 43, 5333–5338.
- 8. Krogulec, E. 2010. Evaluation of infiltration rates within the Vistula River valley, central Poland. Acta Geologica Polonica, 60, 617–628.
- 9. Kurek, S. and Preidl, M. 2003. Explanation for Detailed Geological Map of Poland 1 : 50 000 - sheet Gródek, Ed. PGI-NRI, Warsaw. 1–47.
- 10. Kurek, S. and Preidl, M. 2004. Detailed Geological Map of Poland 1 : 50 000 - sheet Gródek, Ed. PGI-NRI, Warsaw.
- 11. Koonce, J.E., Yu, Z., Farnham, I.M., and Stetzenbach, K.J. 2006. Geochemical interpretation of groundwater flow in the southern Great Basin. Geosphere, 2, 88–101
- 12. Laskowski, K. 2004. Explanation for Detailed Geological Map of Poland 1 : 50 000 - sheet Wierzchlesie, Ed. PGINRI, Warsaw. 1–29.
- 13. Laskowski, K. 2005. Detailed Geological Map of Poland 1 : 50 000 - sheet Wierzchlesie, Ed. PGI-NRI, Warsaw.
- 14. Ma, R., Zheng, C., Prommer, H., Greskowiak, J., Liu, C., Zachara, J. and Rockhold, M. 2010. A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions, Water Resources Research, 46, W05509, doi:10.1029/2009WR008168. 17pp.
- 15. Małecka D., Małecki J.J. and Michalak J. 1998. Dokumentacja hydrogeologiczna ustalenia dyspozycyjnych zasobów wód podziemnych czwartorzędowego piętra wodonośnego zlewni rzeki Krynki, Archiwum Wydz. Geol. UW, Warszawa, 1–62.
- 16. Małecki, J.J. and Matyjasik, M. 2002. Vadose zone – challenges in hydrochemistry. Acta Geologica Polonica. 52, 440–458.
- 17. Małecki, J.J. 1995. Role of the zone of aeration in the formation of groundwater chemical composition. Geological Quarterly, 39, 439–448.
- 18. Małecki, J.J., Małecka, D. and Porowska, D. 2004. Hydrogeological Map of Poland 1 : 50 000 - sheet Wierzchlesie, Ed. PGI-NRI, Warsaw.
- 19. Małecki, J.J. 1998. Role of the aeration zone in forming chemical composition of shallow ground waters, based on cases of selected hydrogeochemical environments, Biuletyn Państwowego Instytutu Geologicznego, 381, 1–219. [In Polish]
- 20. Mao, X., Prommer, H., Barry, D.A., Langevin, C.D., Panteleit, B. and Li, L. 2006. Three-dimensional model for multi-component reactive transport with variable density groundwater flow, Environmental Modelling & Software, 21, 615–628.
- 21. Marks, L. and Karabanov A. (Ed.) 2011. Mapa geologiczna północnej części obszaru przygranicznego Polski i Białorusi. 1 : 250 000. PIG-PIB. Warszawa.
- 22. Nur, A., Jackson, M.I., Solomon, N.Y. 2012. Groundwater Flow Patterns and Hydrochemical Facies Distribution Using Geographical Information System (GIS) in Damaturu, Northeast Nigeria. International Journal of Geosciences, 3, 1096–1106.
- 23. Parkhurst, D.L. and Appelo, C.A.J. 2013. Description of Input and Examples for PHREEQC Version 3–A Computer Program for Speciation. Batch-Reaction. One-Dimensional Transport. and Inverse Geochemical Calculations U.S. Geological Survey Techniques and Methods. book 6. chap. A43. 497 p. available only at http://pubs.usgs.gov/tm/06/a43/.
- 24. PN-EN ISO 10304-1:2009. Jakość wody. Oznaczanie rozpuszczonych anionów za pomocą chromatografii jonowej. Część 1: Oznaczanie bromków, chlorków, fluorków, azotanów, azotynów, fosforanów i siarczanów.
- 25. PN-EN ISO 11885-2009. Jakość wody. Oznaczanie wybranych pierwiastków metodą optycznej spektrometrii emisyjnej z plazmą wzbudzoną indukcyjnie (ICP-OES).
- 26. PN-EN ISO 9963-1:2001. Jakość wody. Oznaczanie zasadowości. Część 1: Oznaczanie zasadowości ogólnej i zasadowości wobec fenoloftaleiny.
- 27. Rodzoch, A. 2009. Map of groundwater renewable resources coefficient of the first aquifer, 1 : 800 000. “HYDROEKO”, Warsaw.
- 28. Rubin, H., Rubin, K., Witkowski, A.J. and Wróbel, J. 2013. Assessment of the impact of Zinc Smelter “Miasteczko Śląskie” on groundwater quality of the Triassic carbonate aquifer within Lubliniec–Myszków Major Groundwater Basin. Biuletyn Państwowego Instytutu Geologicznego, 456, 525–531. [In Polish]
- 29. Somaratne, N. and Frizenschaf, J. 2013. Geological Control upon Groundwater Flow and Major Ion Chemistry with Influence on Basin Management in a Coastal Aquifer, South Australia. Journal of Water Resource and Protection, 5, 1170–1177.
- 30. Speiran, G.K. 2010. Effects of groundwater-flow paths on nitrate concentrations across two Riparian Forest Corridors. Journal of the American Water Resources Association, 46, 246–260.
- 31. Stuyfzand, P.J. 1999. Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeology Journal, 7, 15–27.
- 32. Witczak, S., Kania, J. and Kmiecik, E. 2013. Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania. Institute of Environmental Protection, Warsaw, 1–717.
- 33. Wodyk, K. 2005a. Detailed Geological Map of Poland 1 : 50 000 - sheet Krynki, Ed. PGI-NRI, Warsaw.
- 34. Wodyk, K. 2005b. Explanation for Detailed Geological Map of Poland 1 : 50 000 - sheet Krynki, Ed. PGI-NRI, Warsaw. 1–36.
- 35. Xing, L., Guo, H. and Zhan, Y. 2013. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. Journal of Asian Earth Sciences, 70-71, 250–264.
- 36. Yin, J, Haggerty, R., Stoliker, D.L., Kent, D.B., Istok, J.D., Greskowiak, J. and Zachara J.M. 2011. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments, Water Resources Research , 47, W04502, doi:10.1029/2010WR009369.11pp.
- 37. Zhu, Ch. and Anderson, G. 2002. Environmental Applications of Geochemical Modeling. Cambrige University Press. Cambrige University Press. 1–284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ab72ce0-292d-496f-81f2-7685377fefc5