Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The related work of the diamond burnishing processes focused on improvements in surface quality. The study aims to optimize burnishing factors, including the spraying distance of the nozzle (S), the inlet pressure of the cold air (I), and the quantity of the liquid CO2 (L) of the cool and cryogenic-assisted diamond burnishing operation for minimizing energy consumed (EC) and arithmetical mean surface height roughness (Sa). Burnishing responses are modelled based on the radial basis function network and full factorial data. The entropy method, improved grey wolf optimizer, non-dominated sorting genetic algorithm II, and technique for order of preference by similarity to the ideal solution were implemented to calculate the weights, produce solutions, and select the best outcome. As a result, the optimal data of the S, I, and L were 15.0 mm, 3.0 bar, and 11.0 L/min, respectively. The Sa and EC were reduced by 20.4% and 3.8%, respectively, at the optimality. The optimized outcomes could be employed to improve energy efficiency and machining quality for the internal diamond burnishing process. The optimizing technique could be used to solve complicated issues for different burnishing operations. The cool and cryogenic-assisted diamond burnishing process could be utilized for machining different internal holes.
Rocznik
Tom
Strony
art. no. e151953
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Engineering and Technology, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ho Chi Minh City 700000, Vietnam
autor
- Faculty of Mechanical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi 100000, Vietnam
autor
- Department of Automatic Control, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
autor
- Faculty of Mechanical Engineering, Le Quy Don Technical University, 236 Hoang Quoc Viet, Ha Noi 100000, Vietnam
Bibliografia
- [1] O. Taamallah, H. Hamadache, N. Mokas, A. Amirat, and B. Hamadi, “Investigation of the effects of slide diamond burnishing process on the mechanical performance of GCr15 steel,” J. Fail. Anal. and Preven., vol. 23, pp. 1101–1113, 2023, doi: 10.1007/s11668-023-01652-5.
- [2] R. Kluz, M. Bucior, A. Dzierwa, K. Antosz, W. Bochnowski, and K. Ochał, “Effect of diamond burnishing on the properties of FSW joints of EN AW-2024 aluminum alloys,” Appl. Sci., vol. 13, no. 2, p. 1305, 2023, doi: 10.3390/app13031305.
- [3] T.T. Nguyen and A.L. Van, “Machining and optimization of the external diamond burnishing operation,” Mater. Manuf. Process., vol. 38, no. 10, pp. 1276–1290, 2023, doi: 10.1080/10426914.2022.2072880.
- [4] B. Sachin, S. Narendranath, and D. Chakradhar, “Application of desirability approach to optimize the control factors in cryogenic diamond burnishing,” Arab. J. Sci. Eng., vol. 45, pp. 1305–1317, 2020, doi: 10.1007/s13369-019-04326-3.
- [5] J. Zaghal, V. Molnar, and M. Benke, “Improving surface integrity by optimizing slide diamond burnishing parameters after hard turning of 42CrMo4 steel,” Int. J. Adv. Manuf. Technol., vol. 128, pp. 2087–2103, 2023, doi: 10.1007/s00170-023-12008-6.
- [6] C. Felhő and G. Varga, “CAD and FEM modelling of theoretical roughness in diamond burnishing,” Int. J. Precis. Eng. Manuf., vol. 23, pp. 375–384, 2022, doi: 10.1007/s12541-022-00622-5.
- [7] T.T. Nguyen, T.A. Nguyen, A.L. Van, and X.B. Dang, “Multi-performance optimization of the diamond burnishing process in terms of energy saving and tribological factors,” Proc. Inst. Mech. Eng. E – J. Process Mech. Eng., 2023. doi: 10.1177/09544089231163407.
- [8] J. Maximov, G. Duncheva, A. Anchev, V. Dunchev, and Y. Argirov, “Improvement in fatigue strength of chromium–nickel austenitic stainless steels via diamond burnishing and subsequent low-temperature gas nitriding,” Appl. Sci., vol. 14, no. 3, p. 1020, 2024, doi: 10.3390/app14031020.
- [9] G.V. Duncheva, J.T. Maximov, A. Anchev, V. Dunchev, Y. Argirov, and S. Velkov, “Modeling and optimization of surface integrity and sliding wear resistance of diamond-burnished holes in austenitic stainless steel cylinder lines,” Machines, vol. 11, p. 872, 2023, doi: 10.3390/machines11090872.
- [10] T. Ouahiba, H. Hamid, B. Selma, and L. Laouar, “Multi-objective optimization of slide diamond burnishing parameters for enhanced fatigue resistance of AISI 52100 steel,” J. Braz. Soc. Mech. Sci. Eng., vol. 46, p. 451, 2024, doi: 10.1007/s40430-024-05001-x.
- [11] J.T. Maximov and G.V. Duncheva, “Effects of cryogenic- and cool-assisted burnishing on the surface integrity and operating behavior of metal components: A review and perspectives’,’ Machines, vol. 12, p. 312, 2024; doi: 10.3390/machines12050312.
- [12] J. Chodór et al., “Using the FEM method in the prediction of stress and deformation in the processing zone of an elastic/visco-plastic material during diamond sliding burnishing,” Appl. Sci., vol. 13, no. 3, p. 1963, 2023, doi: 0.3390/app13031963.
- [13] S.C. Cagan, M. Maci, M.M. Buldum, and C. Maci, “Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy,” Bull. Polish Acad. Sci. Tech. Sci., vol. 67, pp. 729–739, 2019, doi: 10.24425/bpasts.2019.130182.
- [14] P. Zhou and M. Tan, “Robust zeroing neural networks with two novel power-versatile activation functions for solving dynamic Sylvester equation,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, p. e141307, 2022, doi: 10.24425/bpasts.2022.141307.
- [15] Q. Chenghui, W. Chongtian, Y. Xiaolu, W. Linxu, Y. Jiaming, and S. Hong, “Multi-objective optimization of PCM-fin structure for staggered Li-ion battery packs,” textitBull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e145677, 2023, doi: 10.24425/bpasts.2023.145677.
- [16] A. Saldaña-Robles, H. Plascencia-Mora, E. Aguilera-Gómez, A. Saldaña-Robles, A. Marquez-Herrera, and J.A. Diosdado-De la Peña, “Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel,” Surf. Coat. Technol., vol. 339, pp. 191–198, 2018, doi: 10.1016/j.surfcoat.2018.02.013.
- [17] B. Buldum and S. Cagan, “Study of ball burnishing process on the surface roughness and microhardness of AZ91D Alloy,” Exp. Tech., vol. 42, pp. 233–241, 2018, doi: 10.1007/s40799-017-0228-8.
- [18] G.D. Revankar, R. Shetty, S.S. Rao, and V.N. Gaitonde, “Analysis of surface roughness and hardness in ball burnishing of titanium alloy,” Measurement, vol. 58, pp. 256–268, 2014, doi: 10.1016/j.measurement.2014.08.043.
- [19] M.T. Le, A.L. Van, T.T. Nguyen, and X.B. Dang, “Ecological design optimization of nozzle parameters for burnishing operation,” J. Appl. Eng. Sci., vol. 21, no. 2, pp. 686–697, 2023, doi: 10.5937/jaes0-41943.
- [20] T.T. Nguyen, T.A. Nguyen, Q.H. Trinh, and X.B. Le, “Multi-performance optimization of multi-roller burnishing process in sustainable lubrication condition,” Mater. Manuf. Process., vol. 37, no. 4, pp. 407–427, 2021, doi: 10.1080/10426914.2021.1962533.
- [21] B. Huang, Y. Kaynak, Y. Sun, and I.S. Jawahir, “Surface Layer modification by cryogenic burnishing of Al 7050-T7451 alloy and validation with FEM-based burnishing model,” Procedia CIRP, vol. 31, pp. 1–6, 2015, doi: 10.1016/j.procir.2015.03.097.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ab6cd2a-63c9-454f-9739-32deeedab39e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.