PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on narrow gap welding of martensitic grade P92 and austenitic grade AISI 304L SS steel for ultra-supercritical power plant application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work investigated the microstructural feature, mechanical properties, and residual stress variation for the dissimilar welded joints (DWJs) of P92 and AISI 304L steel. The multi-pass DWJs were attempted for narrow gap geometry using the tungsten inert gas (TIG) welding process employing the ERNiCrMo-3 filler metal. The martensitic microstructure produced in the P92 HAZ region after welding is brittle due to quenched martensite and the dissolution of precipitates. Thus, the post-weld heat treatment (PWHT) known as tempering was carried out at 760 °C for a period of 2 h to get tempered martensitic microstructure and re-precipitation of dissolved precipitates. The radiographic examination and macrostructure analysis showed defect-free P92/304L SS DWJs. The weld metal showed the complete austenitic microstructure with a Ni weight percentage of 36%. However, segregation of the alloying elements along with the inter-dendritic areas and variation in grain growth during solidification was observed. There is columnar grain morphology at interface, cellular, and equiaxed in the center. The major segregation along the inter-dendritic areas was observed for Nb, Mo, Ti, and Cr that led to the formation of the carbides of type Mo6C, TiC, and NbC, which was confirmed from the energy dispersive spectroscopy (EDS) analysis. From the tensile test result, 304L SS base metal (BM) was inferred as the weakest region in P92/304L SS DWJs. The ultimate tensile strength (UTS) of the as-weld joint was about 626 MPa, along with fracture location in 304L SS base metal. The Charpy impact test results showed that the region with relatively poor impact toughness was austenitic ERNiCrMo-3 filler weld (57 J) which might be due to the segregation of the Nb and Mo along the inter-dendritic areas. However, the impact toughness of the ERNiCrMo-3 filler weld met the minimum requirement of 47J (EN ISO 3580:2017). The micro-hardness result showed that in the as-welded condition, the coarse grain heat affected zone (CGHAZ) has the highest micro-hardness value (340 HV) due to the high weight percentage of Cr and N resulting from the dissolution of M23C6 precipitates followed by the fine grain heat affected zone (FGHAZ, 270 HV), and the inter-critical heat affected zone (ICHAZ, 205 HV). After PWHT, the hardness value was decreased below the maximum allowable value of 265 HV due to the tempering of the martensite. The residual stresses developed in the case of the narrow groove design were less due to the less quantity of weld metal available for volumetric contraction in the case of the narrow groove geometry. The tensile stress was dominant in the weld fusion zone due to the volumetric contraction of the weld metal, while compressive stress was dominant in P92 HAZ because of the martensitic phase transformation.
Rocznik
Strony
art. no. e14, 2023
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Indian Institute of Technology (IIT) Jodhpur, Karwar, Rajasthan 342037, India
  • Advanced Manufacturing Laboratory, Institute of Infrastructure Technology Research and Management, Ahmedabad 380026, India
  • Department of Mechanical Engineering, Indian Institute of Technology (IIT) Jodhpur, Karwar, Rajasthan 342037, India
Bibliografia
  • 1. Ritchie H, Roser M, Rosado P. Energy. In: Our World Data. 2020. https://ourworldindata.org/energy. Accessed 13 Oct 2022.
  • 2. Campbell RJ (2015) Increasing the efficiency of existing coal-fired power plants, Coal-Fired Power Plants. Eff Improv Opt, pp 77-111.
  • 3. Di Gianfrancesco A. The fossil fuel power plants technology. Elsevier. 2017. https://doi.org/10.1016/B978-0-08-100552-1.00001-4.
  • 4. Viswanathan R, Henry JF, Tanzosh J, Stanko G, Shingledecker J, Vitalis B, Purgert R. U.S. Program on materials technology for ultra-supercritical coal power plants. J Mater Eng Perform. 2005;14:281-92. https://doi.org/10.1361/10599490524039.
  • 5. Lee J, Hwang J, Bae D. Welding residual stress analysis and fatigue strength assessment at elevated temperature for multipass dissimilar material weld between alloy 617 and p92 steel. Met Mater Int. 2018;24:877-85. https://doi.org/10.1007/s12540-018-0086-7.
  • 6. Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants-boiler materials: part 1. J Mater Eng Perform. 2001;10:81-95.
  • 7. Pandey C. Mechanical and metallurgical characterization of dissimilar P92/SS304 L welded joints under varying heat treatment regimes. Metall Mater Trans A. 2020;51:2126-42. https://doi.org/10.1007/s11661-020-05660-0.
  • 8. Kulkarni A, Dwivedi DK, Vasudevan M. Dissimilar metal welding of P91 steel-AISI 316L SS with Incoloy 800 and Inconel 600 interlayers by using activated TIG welding process and its effect on the microstructure and mechanical properties. J Mater Process Technol. 2019;274: 116280. https://doi.org/10.1016/j.jmatprotec.2019.116280.
  • 9. Sun Z. Feasibility of producing ferritic/austenitic dissimilar metal joints by high energy density laser beam process. Int J Press Vessel Pip. 1996;68:153-60. https://doi.org/10.1016/0308-0161(94)00048-4.
  • 10. Cao J, Gong Y, Zhu K, Yang Z, Luo X, Gu F. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Mater Des. 2011;32:2763-70. https://doi.org/10.1016/j.matdes.2011.01.008.
  • 11. Banovic SW, DuPont JN, Marder AR. Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys. Sci Technol Weld Join. 2002;7:374-83. https://doi.org/10.1179/136217102225006804.
  • 12. Sauraw A, Sharma AK, Fydrych D, Sirohi S, Gupta A, Świerczyńska A, Pandey C, Rogalski G. Study on Microstructural characterization, mechanical properties and residual stress of GTAW dissimilar joints of P91 and P22 steels. Materials (Basel). 2021;14:6591. https://doi.org/10.3390/ma14216591.
  • 13. Kumar A, Pandey C. Development and evaluation of dissimilar gas tungsten arc-welded joint of P92 Steel/inconel 617 Alloy for advanced ultra-supercritical boiler applications. Metall Mater Trans A. 2022;53:3245-73. https://doi.org/10.1007/s11661-022-06723-0.
  • 14. Xu WH, Lin SB, Fan CL, Yang CL. Prediction and optimization of weld bead geometry in oscillating arc narrow gap all-position GMA welding. Int J Adv Manuf Technol. 2015;79:183-96. https://doi.org/10.1007/s00170-015-6818-7.
  • 15. Feng J, Guo W, Irvine N, Li L. Understanding and elimination of process defects in narrow gap multi-pass fiber laser welding of ferritic steel sheets of 30 mm thickness. Int J Adv Manuf Technol. 2017;88:1821-30. https://doi.org/10.1007/s00170-016-8929-1.
  • 16. Jula M, Dehmolaei R, Alavi Zaree SR. The comparative evaluation of AISI 316/A387-Gr91 steels dissimilar weld metal produced by CCG TAW and PCGTAW processes. J Manuf Process. 2018;36:272-80. https://doi.org/10.1016/j.jmapro.2018.10.032.
  • 17. Bhanu V, Gupta A, Pandey C. Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants-a state of the art review. Nucl Eng Technol. 2022;54:2755-70. https://doi.org/10.1016/j.net.2022.03.003.
  • 18. Shuo W, Limin W, Yi C, Shuping T. Post-weld heat treatment and groove angles affect the mechanical properties of T92/super 304H dissimilar steel weld joints. High Temp Mater Process. 2018;37:649-54. https://doi.org/10.1515/htmp-2016-0261.
  • 19. Li S, Ren S, Zhang Y, Deng D, Murakawa H. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints. J Mater Process Technol. 2017;244:240-52. https://doi.org/10.1016/j.jmatprotec.2017.01.033.
  • 20. Shah Hosseini H, Shamanian M, Kermanpur A. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater Charact. 2011;62:425-31. https://doi.org/10.1016/j.matchar.2011.02.003.
  • 21. Nivas R, Singh PK, Das G, Das SK, Kumar S, Mahato B, Sivaprasad K, Ghosh M. A comparative study on microstructure and mechanical properties near interface for dissimilar materials during conventional V-groove and narrow gap welding. J Manuf Process. 2017;25:274-83. https://doi.org/10.1016/j.jmapro.2016.12.004.
  • 22. Shu F, Lv Y, Liu Y, Xu F, Sun Z, He P, Xu B. Residual stress modeling of narrow gap welded joint of aluminum alloy by cold metal transferring procedure. Constr Build Mater. 2014;54:224-35. https://doi.org/10.1016/j.conbuildmat.2013.12.056.
  • 23. Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Effects of groove configuration and buttering layer on the through-thickness residual stress distribution in dissimilar welds. Int J Press Vessel Pip. 2021;192: 104392. https://doi.org/10.1016/j.ijpvp.2021.104392.
  • 24. Saini N, Mulik RS, Mahapatra MM, Sharma NK, Li L. Dissolution of laves phase by re-austenitization and tempering of creep strength enhanced ferritic steel. Mater Sci Technol (United Kingdom). 2020;36:631-44. https://doi.org/10.1080/02670836.2020.17244 04.
  • 25. Mohyla P, Republic C. Influence of delta ferrite on mechanical and creep, (n.d.) 75-83.
  • 26. Fu JW, Yang YS, Guo JJ. Formation of a blocky ferrite in Fe-Cr-Ni alloy during directional solidification. J Cryst Growth. 2009;311:3661-6. https://doi.org/10.1016/j.jcrysgro.2009.05.007.
  • 27. Xu H, Xu MJ, Yu C, Lu H, Wei X, Chen JM, Xu JJ. Effect of the microstructure in unmixed zone on corrosion behavior of 439 tube/308L tube-sheet welding joint. J Mater Process Technol. 2017;240:162-7. https://doi.org/10.1016/j.jmatprotec.2016.09.017.
  • 28. Gabrel J, Bendick W, Vandenberghe B, Lefebvre B. Status of development of VM 12 steel for tubular applications in advanced power plants. Energy Mater. 2006;1:218-22. https://doi.org/10.1179/174892406X173657.
  • 29. Siefert JA, David SA. Weldability and weld performance of candidate austenitic alloys for advanced ultrasupercritical fossil power plants. Sci Technol Weld Join. 2014;19:271-94. https://doi.org/10.1179/1362171814Y.00000 00197.
  • 30. Brozda J. New generation creep-resistant steels, their weldability and properties of welded joints: T/P92 steel.Weld Int. 2005;19:5-13. https://doi.org/10.1533/wint.2005.3370.
  • 31. Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Measurement of through-thickness residual stresses under restrained condition in pressure vessel steel weld. In: Saran VH, Misra RK, editors. Advances in systems engineering, Lecture notes in mechanical engineering. Singapore: Springer; 2021. p. 119-25. https://doi.org/10.1007/978-981-15-8025-3_13.
  • 32. Taraphdar PK, Kumar R, Pandey C, Mahapatra MM. Significance of finite element models and solid-state phase transformation on the evaluation of weld induced residual stresses. Met Mater Int. 2021. https://doi.org/10.1007/s12540-020-00921-4.
  • 33. Guo X, Gong J, Jiang Y, Rong D. The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature. Mater Sci Eng A. 2013;564:199-205. https://doi.org/10.1016/j.msea.2012.10.024.
  • 34. Chen G, Zhang Q, Liu J, Wang J, Yu X, Hua J, Bai X, Zhang T, Zhang J, Tang W. Microstructures and mechanical properties of T92/Super304H dissimilar steel weld joints after high-temperature ageing. Mater Des. 2013;44:469-75. https://doi.org/10.1016/j.matdes.2012.08.022.
  • 35. Seo W-G, Suh J-Y, Singh A, Shim J-H, Lee H, Yoo K, Choi S-H. Microstructural evolution of P92 steel in IN740H/P92 dissimilar weld joints during creep deformation. Mater Sci Eng A. 2021;821:141614. https://doi.org/10.1016/j.msea.2021.141614.
  • 36. Barbadikar DR, Sakthivel T, Ballal AR, Peshwe DR, Rao PS, Mathew MD, Barbadikar DR, Sakthivel T, Ballal AR, Peshwe DR, Syamala P. Materials at High Temperatures An assessment of mechanical properties of P92 steel weld joint and simulated heat affected zones by ball indentation technique. Mater High Temp. 2017;3409:1-11. https://doi.org/10.1080/09603409.2017.1371913.
  • 37. Obiko J, Chown LH, Whitefield DJ. Microstructure characterisation and microhardness of P92 steel heat treated at the transformation temperatures. IOP Conf Ser Mater Sci Eng. 2019. https://doi.org/10.1088/1757-899X/655/1/012014.
  • 38. Maddi L, Ballal AR, Peshwe DR, Mathew MD. Influence of normalizing and tempering temperatures on the creep properties of P92 steel. High Temp Mater Process. 2020;39:178-88. https://doi.org/10.1515/htmp-2020-0033.
  • 39. Wang Y, Li L, Kannan R. Transition from Type IV to Type I cracking in heat-treated grade 91 steel weldments. Mater Sci Eng A. 2018;714:1-13. https://doi.org/10.1016/j.msea.2017.12. 088.
  • 40. Kou S, Yang YK. Fusion-boundary macrosegregation in dissimilar-filler welds. Weld J (Miami Fla). 2007;86:303-12.
  • 41. Cieslak MJ, Headley TJ, Kollie T, Romig AD. Melting and solidification study of Alloy 625. Metall Trans A Phys Metall Mater Sci. 1988;19A:2319-31. https://doi.org/10.1007/BF02645056.
  • 42. Silva CC, De Miranda HC, Motta MF, Farias JP, Afonso CRM, Ramirez AJ. New insight on the solidification path of an alloy 625 weld overlay. J Mater Res Technol. 2013;2:228-37. https://doi.org/10.1016/j.jmrt.2013.02.008.
  • 43. Dak G, Pandey C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J Manuf Process. 2020;58:377-406. https://doi.org/10.1016/j.jmapro.2020.08.019.
  • 44. Ramkumar KD, Abraham WS, Viyash V, Arivazhagan N, Rabel AM. Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints. J Manuf Process. 2017;25:306-22. https://doi.org/10.1016/j.jmapro.2016.12.018.
  • 45. Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci. 2006;37:269-77. https://doi.org/10.1016/j.commatsci.2005.07.007.
  • 46. Li S, Hu L, Dai P, Bi T, Deng D. Influence of the groove shape on welding residual stresses in P92/SUS304 dissimilar metal butt-welded joints. J Manuf Process. 2021;66:376-86. https://doi.org/10.1016/j.jmapro.2021.04.030.
  • 47. Venkata KA, Kumar S, Dey HC, Smith DJ, Bouchard PJ, Truman CE. Study on the effect of post weld heat treatment parameters on the relaxation of welding residual stresses in electron beam welded P91 steel plates. Proc Eng. 2014;86:223-33.
  • 48. Deng D, Zhang Y, Li S, Tong Y. influence of solid-state phase transformation on residual stress in P92 steelwelded joint. Jinshu Xuebao/Acta Metall Sin. 2016;52:394-402. https://doi.org/10.11900/0412.1961.2015.00371.
  • 49. Maduraimuthu V, Vasudevan M, Muthupandi V, Bhaduri AK. Effect of activated flux on the microstructure, mechanical properties, and residual stresses of modified 9Cr-1Mo steel weld joints. Metall Mater Trans B. 2012;43:123-32. https://doi.org/10.1007/s11663-011-9568-4.
  • 50. David SA, Siefert JA, Feng Z. Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. Sci Technol Weld Join. 2013;18:631-51. https://doi.org/10.1179/1362171813Y.00000 00152.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ab5636c-1cb0-40e1-a55c-dd144fc64a07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.