Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to investigate the effect of substrate – polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. Methods: The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt. The reference material was pure polymer membrane. RAW 264.7 were deposited on the material and then irradiated with a laser with a wavelength of 808 nm, a power of 100 mW, an irradiation dose of 2 J/cm2/cell well, applied continuously (C), (100/2/C) or pulsed (I), (100/2/I). Results: Macrophage irradiation resulted in an increase in their adhesion. Modifying the PCL membranes with rosmarinic acid had no effect on cell viability on day 3 of the cell culture. Irradiation of macrophages cultured on PCL-RA material increased their viability. Irradiation of macrophages cultured on PCL-RA material decreased macrophage secretion of NO and protein and the increase in TNF and MCP-1 secretion was only transient on day 3 of culture. Conclusions: Macrophage irradiation had a positive effect on macrophage attachment. Modification of PCL membranes with rosmarinic acid influenced the biological activity of macrophages. Culture of macrophages on rosmarinic acid-modified PCL membranes and simultaneous irradiation of LLLT cells resulted in anti-inflammatory effects.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
160--170
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
- Institute of Applied Sciences, Academy of Physical Education, Kraków, Poland
autor
- Institute of Applied Sciences, Academy of Physical Education, Kraków, Poland
autor
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Kraków, Poland
autor
- Department of Applied Cosmetology, University of Physical Education and Sport, Gdańsk, Poland
autor
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
autor
- Institute of Applied Sciences, Academy of Physical Education, Kraków, Poland
autor
- Institute of Applied Sciences, Academy of Physical Education, Kraków, Poland
- Institute of Applied Sciences, Academy of Physical Education, Kraków, Poland
Bibliografia
- [1] AKOURY E., Isolation and Structural Elucidation of Rosmarinic Acid by Nuclear Magnetic Resonance Spectroscopy, Am. J. Chem. Res., 2017, 1, 17–23.
- [2] ALBAYRAK S., AKSOY A., ALBAYRAK S., SAGDIC O., In vitro antioxidant and antimicrobial activity of some Lamiaceae species, Iran J. Sci. Technol., 2013, 37 (1), 1–9.
- [3] ALGHAMDI K.M., KUMAR A., MOUSSA N.A., Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells, Lasers Med. Sci., 2011, 1, 237–249.
- [4] ALVES A.C., DE PAULA VIEIRA R., PINTO LEAL-JUNIOR E.C., DOS SANTOS S.A., LIGEIRO A.P., ALBERTINI R., SILVA Jr. J.A., Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation, Arthritis Res. Ther., 2013, 5, 1–11.
- [5] BARDAKCI A.H., AKAYDIN G., KIRMIZIBEKMEZ H., YESILADA E., Validated HPTLC method for the quantitative analysis of rosmarinic acid in several Salvia Turk, Turk. J. Pharm. Sci., 2014, 11 (3), 245–254.
- [6] BASSO F.G., PANSANI T.N., TURRIONI A.P., BAGNATO V.S., HEBLING J., DE SOUZA COSTA J.C., In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts, Int. J. Dent., 2012, 719452, 1–7.
- [7] BENEDEC D., ONIGA I., KOZMA-IMRE A., HANGANU D., ŢARMURE V., BODOKI E., Determination of rosmarinic acid by hptlc-image analysis in medicinal teas and their biological properties, Farmacia, 2017, 65 (4), 1–5.
- [8] BI Z., CAI Y., SHI X.., CHEN J., LI D., ZHANG P., LIU J., Macrophage-mediated immunomodulation in biomaterial-assisted bone repair: Molecular insights and therapeutic prospects, Chem. Eng. J., 2024, 488, 150631.
- [9] FATHABADIE F.F., BAYAT M., AMINI A., BAYAT M., REZAIE F., Effects of pulsed infra-red low level-laser irradiation on mast cells number and degranulation in open skin wound healing of healthy and streptozotocin-induced diabetic rats, J. Cosmet. Laser Ther., 2013, 15 (6), 294–304.
- [10] FERNANDES K.P.S., SOUZA N.H.C., MESQUITA-FERRARI R.A., SILVA D.F.T., ROCHA L.A., ALVES A.N., SOUSA K.B., BUSSADORI S.K., HAMBLIN M.R., NUNES F.D., Photobiomodulation with 660-nm and 780-nm laser on activated J774 macrophage-like cells: Effect on M1 inflammatory markers, J. Photobiol., 2015, 153, 344–351.
- [11] GOLOVYNSKA I., STEPANOV Y.V., GOLOVYNSKYI S., ZHOU T., STEPANOVA L.I., GARMANCHUK L.V., OHULCHANSKYY T.Y., QU J., Macrophages Modulated by Red/NIR Light: Phagocytosis, Cytokines, Mitochondrial Activity, Ca2+ Influx, Membrane Depolarization and Viability, Photochem. Photobiol., 2022, 98, 484–497.
- [12] HUANG N., HAUCK C., YUM M.Y., RIZSHSKY L., WIDRLECHNER M.P., MCCOY J.A., MURPHY P.A., DIXON P.M., NIKOLAU B.J., BIRT D.F., Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide-induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages, J. Agric. Food Chem., 2009, 57, 10579–10589.
- [13] HUANG N., HAUCK C., YUM M.Y., RIZSHSKY L., WIDRLECHNER M.P., MCCOY J.A., BIRT D.F., Rosmarinic acid in Prunella vulgaris ethanol extract inhibits lipopolysaccharide- induced prostaglandin E2 and nitric oxide in RAW 264.7 mouse macrophages, J. Agric. Food Chem., 2020, 22, 57, 10579–10589.
- [14] JIANG K., MA X., GUO S., ZHANG T., ZHAO G., WU H., WANG X., DENG G., Anti-inflammatory effects of Rosmarinic Acid in lipopolysaccharide-induced mastitis in mice, Inflammation, 2018, 41, 437–448.
- [15] KANENARI M., ZHAO J., ABIKO Y., Enhancement of microtubule-associated protein-1 Alpha gene expression in osteoblasts by low level laser irradiation, Laser, 2011, 20, 47–51.
- [16] KIM D.S., KIM H.R., WOO E.R., HONG S.T., CHAE H.J., CHAE S.W., Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase, Biochem. Pharmacol., 2005, 70, 1066–1078.
- [17] KOHALE B.R., AGRAWAL A.A., SOPE A.B., PARDESHI K.V., RAUT C.P., Low-level Laser Therapy: A Literature Review, Int. J. Laser Dent., 2015, 5 (1), 1–5.
- [18] KOWALSKA K., OLEJNIK A., Rosemary – a herbal plant with therapeutic potential, Post. Fitot., 2010, 2, 114–122 (”in Polish”).
- [19] LEDEN R.E., COONEY S.J., FERRARA T.M., ZHAO Y., DALGARD C.L., ANDERS J.J., BYRNES K.R., 808-nm Wavelength Light Induces a Dose-Dependent Alteration in Microglial Polarization and Resultant Microglial Induced Neurite Growth, Lasers Surg. Med., 2013, 45, 253–263.
- [20] LIU Q., ZHANG R.-Z., XU B., Construction of a three-dimensional in-vitro skin model on polycaprolactone fibers, Ital. Dermatol. Venereol., 2018, 153 (5), 636–643.
- [21] MA L., LI M., KOMASA S., HONTSU S., HASHIMOTO Y., OKAZAKI J., MAEKAWA K., Effect of Er:YAG Pulsed Laser- Deposited Hydroxyapatite Film on Titanium Implants on M2 Macrophage Polarization In Vitro and Osteogenesis In Vivo, Int. J. Mol. Sci., 2024, 25 (1), 349.
- [22] MCWHORTER F.Y., WANG T., NGUYEN P., CHUNG T., LIU W.F., Modulation of macrophage phenotype by cell shape, Proc. Natl. Acad. Sci., 2013, 110, 43, 17253–17258.
- [23] MOON D.O., KIM M.O., LEE J.D., CHOI Y.H., KIM G.Y., Rosmarinic acid sensitizes cell death through suppression of TNF-α-induced NF-κB activation and ROS generation in human leukemia U937 cells, Cancer Lett., 2010, 288, 183–191.
- [24] NAKKALA J.R., DUAN Y., DING J., MUHAMMAD W., ZHANG D., MAO Z., OUYANG H., GAO C., Macrophage membrane-functionalized nanofibrous mats and their immunomodulatory effects on macrophage polarization, Acta Biomat., 2022, 141, 24–38. 170 A. MATUŁA et al.
- [25] PAGIN M.T., DE OLIVEIRA F.A., OLIVEIRA R.C., SANT’ANA A.C., DE REZENDE M.L., GREGHI S.L., DAMANTE C.A., Laser and light-emitting diode effects on pre-osteoblast growth and differentiation, Lasers in Med. Sci., 2014, 29, 55–59.
- [26] PAJARINEN J., LIN T., GIBON E., KOHNO Y., MARUYAMA M., NATHAN K., GOODMAN S.B., Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 2019, 196, 80–89.
- [27] PATTANANANDECHA T., APICHAI S., JULSRIGIVAL J., UNGSURUNGSIE M., SAMUHASANEETOO S., CHULASIRI P., KWANKHAO P., PITIPORN S., OGATA F.F., KAWASAKI N., SAENJUM C., Antioxidant Activity and Anti-Photoaging Effects on UVA-Irradiated Human Fibroblasts of Rosmarinic Acid Enriched Extract Prepared from Thunbergia laurifolia Leaves, Plants, 2021, 10, 1648
- [28] SONG J., PARK B., SHI S., KIM I., Low-Level Laser Irradiation Stimulates RANKL-Induced Osteoclastogenesis via the MAPK Pathway in RAW 264.7 Cells, App. Sci., 2021, 11 (5360), 1–13.
- [29] SONG J.W., LI K., LIANG Z.W., Low_level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats, Sci. Rep., 2017, 7 (620), 1–13.
- [30] SOTNIKOVA R., OKRUHLICOVA L., VLKOVICOVA J., NAVAROVA J., GAJDACOVA B., PIVACKOVA L., FIALOVA S., KRENEK P., Rosmarinic acid administration attenuates diabetes-induced vascular dysfunction of the rat aorta, J. Pharm. Pharmacol., 2013, 65, 713–723.
- [31] SOUZA N.H.C, FERRARI R.A.M., SILVA D.F.T, NUNES F.D., BUSSADORI S.K., FERNANDES K.P.S., Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages, Braz. J. Phys. Ther., 2014, 18 (4), 308–314.
- [32] STANDER B.A., VAN VOLLENSTEE F.A., KALLMEYER K., POTGIETER M., JOUBERT A., SWANEPOEL A., PEPPER M.S., An in vitro and in vivo study on the properties of hollow polycaprolactone cell-delivery particles, PLoS ONE, 2018, 13 (7), 1–17.
- [33] SZPONDER T., STODOLAK-ZYCH E., POLKOWSKA I., SOBCZYŃSKARAK A., Impact of a pulsed magnetic field on selected polymer implant materials, Acta Bioeng. Biomech., 2019, 21, 87–76.
- [34] VALENTE C.A., CHAGASTELLES P.C., NICOLETTI N.F., GARCEZ G.R., SGARIONI B., HERRMANN F., PESENATTO G., GOLDANI E., Design and optimization of biocompatible polycaprolactone/poly (L-lactic-co-glycolic acid) scaffolds with and without microgrooves for tissue engineering applications, J. Biomed. Mat. Res., 2018, 106, 1522–1534.
- [35] VIOLA A., MUNARI F., SÁNCHEZ-RODRÍGUEZ R., SCOLARO T., CASTEGNA A., The metabolic signature of macrophage responses, Front. Immunol., 2019, 10 (1462), 1–16.
- [36] YANGKANG S., LEE S.Y., HAN A.H., KIM J.B., JEONG H.G., JIN C.H., Rosmarinic Acid Methyl Ester Inhibits LPS-Induced NO Production via Suppression of MyD88- Dependent and - Independent Pathways and Induction of HO-1 in RAW 264.7 Cells, Molecules, 2016, 21, 1083, 1–15.
- [37] ZHANG J., SUN J., ZHENG Q., HU X., WANG Z., LIANG Z., Low-level laser therapy 810-nm up-regulates macrophage secretion of neurotrophic factors via PKA-CREB and promotes neuronal axon regeneration in vitro, J. Cell Mol. Med., 2020, 24, 476–487.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0ab06727-ee33-4e67-bcc8-aba28d0c66f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.