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Abstrat. The �rst step to make transitional systems more e�ient is to minimize

the number of their states. A bisimulation relation is a mathematial tool that helps

in searhing for equivalent systems, what is useful in the minimization of algorithms.

For two transition systems bisimulation is a binary relation assoiating systems whih

behave in the same way in the sense that one system simulates the other and vie-

versa. The de�nition for lassial systems is lear and simple, but what happens with

nondeterministi, probabilisti and quantum systems? This will be the main topi

of this artile.

1. Introdution

During the last �fty years many sientists have been searhing for new om-

putation models. They have developed probabilisti automata, models of

�nite automata over in�nite words, timed automata, hybrid automata, et.

We an �nd their ontologial review in the artile [5℄. In 1997 Kondas and

Watrous formulated the model of 1-way quantum �nite automata (1QFA) [4℄;

in the same year, independently, Moore and Cruth�eld de�ned the quantum

�nite automata [6℄. Later, the model of quantum automata was evolved by

Ambainis in many works (see e.g. [1℄). This artile present the de�nition of

the bisimulation relation for di�erent types of automata. The main fous will

be on a �nite reative probabilisti automaton and a one-way quantum �nite

automaton.
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2. De�nitions of models

A transition system is a four-tuple TS = (S,E, T, s0), where S is a set

of states with the initial state s0, E is a set of events, T ⊆ S × E × S is a

transition relation (as usual, the transition (s, a, s1) is written as s
a
→ s1) [5℄.

The more omplex example of a transition system is a nondeterministi

�nite automaton whih is a tuple NFA = (Q,Σ, δ, q0, F ), where Q is a �nite

set of states with the start state q0, Σ is a �nite set of input symbols, δ is

a transition partial funtion δ : Q×Σ �→ 2Q, F ⊆Q is a set of �nal states [3℄.

A Markov hain is the transition system, in whih the probability of

reahing the given state is onsidered. A �nite Markov hain is a pair

MC = (Q, δ), where Q is a set of states, δ is a transition funtion

(δ : Q �→ D(Q), where D(Q) is a disrete probability distribution) [10℄.

If q ∈ Q and δ(q) = P with P (q′) = p > 0, then the Markov hain is

said to go from the state q to the state q′ with probability p. We an �nd

the di�erent notations of the same phenomenon: q � P , q
p
� q′, δ(q) = P ,

δ(q)(q′) = p. Let us onsider further extension of this model. A �nite

reative probabilisti automaton is a tuple PA = (Q,Σ, δ, q0, F ), where
Q is a �nite set of states, Σ is a �nite set of input symbols, δ : Q×Σ �→ D(Q)
is a transition partial funtion, q0 ∈ Q is an initial state, F ⊆ Q is a set of

�nal (aepting) states [10℄.

Figure 1: The PA example

After eah step, a probabilisti automaton is in a superposition of states:

p0q0 + p1q1 + ... + pnqn, where p0 + p1 + ... + pn = 1.

To de�ne a quantum automaton we need a brief introdution to the theory

of quantum omputing. In quantum mehanis the possible states of n-level
quantum mehanial system are represented by unit vetors (alled "the state

vetors") residing in a omplex Hilbert spae Hn (alled "the state spae").

For the desription of this system an ortonormal basis is used:

|x1〉, |x2〉, . . . , |xn〉, where the basis vetors |xi〉 are alled the basis states.

Any quantum state an be expressed by a superposition of basis states:

α1|x1〉+α2|x2〉+ · · ·+αn|xn〉, where αi is a omplex number known as a prob-
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ability amplitude. The probability of observing the state xi is equal to |αi|
2,

with the normalization |α1|
2 + |α2|

2 + · · · + |αn|
2 = 1. Time evolution of

quantum system is represented by a unitary matrix (it has an inverse equal to

its onjugate transpose). This is a stronger ondition than that in the proba-

bilisti systems, it auses a phenomenon of interferene e�ets and guarantees

that the time evolution of quantum state is reversible [2℄.

A one-way quantum �nite automaton (de�ned by Kondas and Wa-

trous) is a tuple 1QFA = (Q,Σ, δ, q0, Qa, Qr), where Q is a �nite set of states,

Σ is a �nite set of input symbols, δ is a transition partial funtion, q0 ∈ Q is

an initial state, Qa ⊂ Q and Qr ⊂ Q are sets of aepting and rejeting states.

Figure 2: The 1-way QFA example

Qa and Qr are alled non-halting states; Qn = Q\(Qa ∪ Qr). The symbols ⌊
and ⌉ mark the beginning and the end of the word on the tape. The working

alphabet of automaton is Γ = Σ ∪ {⌊, ⌉} [4℄.

The transition funtion δ : Q × Γ × Q �→ C represents the amplitude with

whih an automaton being urrently in a state |q〉, reading the symbol σ, will
hange a state to |q′〉. For σ ∈ Γ, Vσ is a linear transformation de�ned by:

Vσ(|q〉) =
∑

q′∈Q δ(q, σ, q′)|q′〉 [1℄, [4℄.

3. Bisimulation

First, we must ask the question: when are two proesses (states) behavioraly

equivalent? Seondly, what does it mean for two systems to be equal with

respet to their ommuniation strutures? The bisiumlation relation will

allow us to �nd the answers.

Two transition systems TS1 = (T,Σ, δT , t0) and TS2 = (S,Σ, δS , s0) are

bisimilar i� there is a relation R ⊆ S × T suh that (s0, t0) ∈ R and for all

pairs (s, t) ∈ R and for all σ ∈ Σ the following holds: whenever δT (t, σ) = t′,
then there exists s′ ∈ S suh that δS(s, σ) = s′ and (s′, t′) ∈ R, and whenever

δS(s, σ) = s′, then there exists t′ ∈ T suh that δT (t, σ) = t′, and (s′, t′) ∈ R.

The states s and t are alled bisimilar whih is denoted by s ≈ t [7℄, [10℄.
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There is a simple way to determine whether two systems are bisimilar �

by playing a game. This is a game between two persons: the Player and the

Opponent. The Player tries to prove that systems are bisimilar, the Opponent

intends otherwise. The Opponent opens the game by hoosing a transition

from the initial state of one of the systems. The Player has to �nd an equally

labelled transition from the initial state of the seond system, new states are

the starting points for the next turn. If one of the players annot move � the

other wins this turn of the game. The Player loses abundantly if there are no

orresponding transition for Opponent's move. The Player wins any in�nite

turn of the game or any repeated on�guration.

Figure 3: Example of nonbisimilar and bisimilar automata

In the �rst ase, after reading the symbol 0 the Player must be in a state

t1 or t2, then the road runs out to him, aordingly, or for the symbol 2 or 1.
Systems are not bisimilar.

In the seond example, we see that for eah state and eah symbol the

Player will always �nd a orresponding way in the seond automaton, so the

automata are bisimilar.

4. Bisimulation for probabilisti and quantum
systems

To de�ne a bisimulation relation for probabilisti and quantum automata, one

an wonder how to ompare distributions of probabilities. For this purpose

we use the following de�nitions.

Let R ⊆ S × T be a relation between sets S and T . Let P1 ∈ D(S)
and P2 ∈ D(T ) be probability distributions. De�ne P1 ≡R P2 i� there exists

a distribution Pr ∈ D(S × T ) suh that Pr(s, T ) = P1(s) for any s ∈ S,
Pr(S, t) = P2(t) for any t ∈ T , Pr(s, t) �= 0 i� (s, t) ∈ R [10℄.

Let R be an equivalene relation on the set S and let P1, P2 ∈ D(S) be

probability distributions. Then P1 ≡R P2 ⇐⇒ ∀C ∈ S/R : P1(C) = P2(C),
where C is an abstrat lass [10℄.
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Let R be an equivalene relation on the set S, A be an arbitrary set, and

let P1, P2 ∈ D(S) be probability distributions. Then P1 ≡R,A P2 ⇐⇒ ∀C ∈
S/R,∀a ∈ A : P1(a,C) = P2(a,C) [10℄.

An equivalene relation on a set of states Q of a Markov hain (Q, δ) will

be a bisimulation relation i� ∀(q, t) ∈ R the following holds: if δ(q) = P1, then

there exists δ(t) = P2 suh that P1 ≡R P2.

Let PA1 = (S,Σ, δS) and PA2 = (T,Σ, δT ) be two probabilisti automata,

then there exists a bisimulation relation R ⊆ S × T if for all pairs (s, t) ∈ R
and for all σ ∈ Σ we have: if δS(s, σ) = P1, then there exists a probability

distribution P2 suh that for some t ∈ T there exists δT (t, σ) = P2 and

P1 ≡R,Σ P2 [10℄.

Figure 4: Bisimilar PA

Finally let us go to the bisimulation of the quantum automata, in this ase

we have to ompare the linear operators.

For the given operator Vσ we de�ne vσ(S) =
∑

q′∈S |δ(q, σ, q′)|2 (the sum

of squares of the values of ruthless amplitudes), where S ⊆ Q.

Let R be an equivalene relation on the set S, A be an arbitrary set,

and V1, V2 be unitary operators orresponding to transitions of the quantum

system. Then V1 ≡R,A V2 ⇐⇒ ∀C ∈ S/R, ∀a ∈ A : v1a(C) = v2a(C).

Figure 5: Bisimilar 1-way QFA

Let 1QFA1 = (S,Σ, δS) and 1QFA2 = (T,Σ, δT ) be two one-way quantum

�nite automata. Then there exists a bisimulation relation R ⊆ S ×T if for all

pairs (s, t) ∈ R and for all σ ∈ Σ we have: if V1σ(|s〉) =
∑

s′∈S δS(s, σ, s′)|s′〉,
then there exists V2σ(|t〉) =

∑
t′∈T δT (t, σ, t′)|t′〉 suh that V1 ≡R,Σ V2.



140 Olga Siedleka-Lamh

5. Summary

A bisimulation relation an be a great tool to searh for systems that simulate

eah other, and therefore their behavior is analogous to the same symbols,

ations, impulses.

The simple way for heking whether or not two lassial systems are

bisimilar is a game, but for probabilisti and quantum systems we have to

onsider the sum of probabilities and amplitudes.

Bisimulation an also be a foundation for relations useful, for example, in

minimization of systems [8℄, [9℄.
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