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Abstra
t. The �rst step to make transitional systems more e�
ient is to minimize

the number of their states. A bisimulation relation is a mathemati
al tool that helps

in sear
hing for equivalent systems, what is useful in the minimization of algorithms.

For two transition systems bisimulation is a binary relation asso
iating systems whi
h

behave in the same way in the sense that one system simulates the other and vi
e-

versa. The de�nition for 
lassi
al systems is 
lear and simple, but what happens with

nondeterministi
, probabilisti
 and quantum systems? This will be the main topi


of this arti
le.

1. Introdu
tion

During the last �fty years many s
ientists have been sear
hing for new 
om-

putation models. They have developed probabilisti
 automata, models of

�nite automata over in�nite words, timed automata, hybrid automata, et
.

We 
an �nd their ontologi
al review in the arti
le [5℄. In 1997 Konda
s and

Watrous formulated the model of 1-way quantum �nite automata (1QFA) [4℄;

in the same year, independently, Moore and Crut
h�eld de�ned the quantum

�nite automata [6℄. Later, the model of quantum automata was evolved by

Ambainis in many works (see e.g. [1℄). This arti
le present the de�nition of

the bisimulation relation for di�erent types of automata. The main fo
us will

be on a �nite rea
tive probabilisti
 automaton and a one-way quantum �nite

automaton.
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2. De�nitions of models

A transition system is a four-tuple TS = (S,E, T, s0), where S is a set

of states with the initial state s0, E is a set of events, T ⊆ S × E × S is a

transition relation (as usual, the transition (s, a, s1) is written as s
a
→ s1) [5℄.

The more 
omplex example of a transition system is a nondeterministi


�nite automaton whi
h is a tuple NFA = (Q,Σ, δ, q0, F ), where Q is a �nite

set of states with the start state q0, Σ is a �nite set of input symbols, δ is

a transition partial fun
tion δ : Q×Σ �→ 2Q, F ⊆Q is a set of �nal states [3℄.

A Markov 
hain is the transition system, in whi
h the probability of

rea
hing the given state is 
onsidered. A �nite Markov 
hain is a pair

MC = (Q, δ), where Q is a set of states, δ is a transition fun
tion

(δ : Q �→ D(Q), where D(Q) is a dis
rete probability distribution) [10℄.

If q ∈ Q and δ(q) = P with P (q′) = p > 0, then the Markov 
hain is

said to go from the state q to the state q′ with probability p. We 
an �nd

the di�erent notations of the same phenomenon: q � P , q
p
� q′, δ(q) = P ,

δ(q)(q′) = p. Let us 
onsider further extension of this model. A �nite

rea
tive probabilisti
 automaton is a tuple PA = (Q,Σ, δ, q0, F ), where
Q is a �nite set of states, Σ is a �nite set of input symbols, δ : Q×Σ �→ D(Q)
is a transition partial fun
tion, q0 ∈ Q is an initial state, F ⊆ Q is a set of

�nal (a

epting) states [10℄.

Figure 1: The PA example

After ea
h step, a probabilisti
 automaton is in a superposition of states:

p0q0 + p1q1 + ... + pnqn, where p0 + p1 + ... + pn = 1.

To de�ne a quantum automaton we need a brief introdu
tion to the theory

of quantum 
omputing. In quantum me
hani
s the possible states of n-level
quantum me
hani
al system are represented by unit ve
tors (
alled "the state

ve
tors") residing in a 
omplex Hilbert spa
e Hn (
alled "the state spa
e").

For the des
ription of this system an ortonormal basis is used:

|x1〉, |x2〉, . . . , |xn〉, where the basis ve
tors |xi〉 are 
alled the basis states.

Any quantum state 
an be expressed by a superposition of basis states:

α1|x1〉+α2|x2〉+ · · ·+αn|xn〉, where αi is a 
omplex number known as a prob-
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ability amplitude. The probability of observing the state xi is equal to |αi|
2,

with the normalization |α1|
2 + |α2|

2 + · · · + |αn|
2 = 1. Time evolution of

quantum system is represented by a unitary matrix (it has an inverse equal to

its 
onjugate transpose). This is a stronger 
ondition than that in the proba-

bilisti
 systems, it 
auses a phenomenon of interferen
e e�e
ts and guarantees

that the time evolution of quantum state is reversible [2℄.

A one-way quantum �nite automaton (de�ned by Konda
s and Wa-

trous) is a tuple 1QFA = (Q,Σ, δ, q0, Qa, Qr), where Q is a �nite set of states,

Σ is a �nite set of input symbols, δ is a transition partial fun
tion, q0 ∈ Q is

an initial state, Qa ⊂ Q and Qr ⊂ Q are sets of a

epting and reje
ting states.

Figure 2: The 1-way QFA example

Qa and Qr are 
alled non-halting states; Qn = Q\(Qa ∪ Qr). The symbols ⌊
and ⌉ mark the beginning and the end of the word on the tape. The working

alphabet of automaton is Γ = Σ ∪ {⌊, ⌉} [4℄.

The transition fun
tion δ : Q × Γ × Q �→ C represents the amplitude with

whi
h an automaton being 
urrently in a state |q〉, reading the symbol σ, will

hange a state to |q′〉. For σ ∈ Γ, Vσ is a linear transformation de�ned by:

Vσ(|q〉) =
∑

q′∈Q δ(q, σ, q′)|q′〉 [1℄, [4℄.

3. Bisimulation

First, we must ask the question: when are two pro
esses (states) behavioraly

equivalent? Se
ondly, what does it mean for two systems to be equal with

respe
t to their 
ommuni
ation stru
tures? The bisiumlation relation will

allow us to �nd the answers.

Two transition systems TS1 = (T,Σ, δT , t0) and TS2 = (S,Σ, δS , s0) are

bisimilar i� there is a relation R ⊆ S × T su
h that (s0, t0) ∈ R and for all

pairs (s, t) ∈ R and for all σ ∈ Σ the following holds: whenever δT (t, σ) = t′,
then there exists s′ ∈ S su
h that δS(s, σ) = s′ and (s′, t′) ∈ R, and whenever

δS(s, σ) = s′, then there exists t′ ∈ T su
h that δT (t, σ) = t′, and (s′, t′) ∈ R.

The states s and t are 
alled bisimilar whi
h is denoted by s ≈ t [7℄, [10℄.
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There is a simple way to determine whether two systems are bisimilar �

by playing a game. This is a game between two persons: the Player and the

Opponent. The Player tries to prove that systems are bisimilar, the Opponent

intends otherwise. The Opponent opens the game by 
hoosing a transition

from the initial state of one of the systems. The Player has to �nd an equally

labelled transition from the initial state of the se
ond system, new states are

the starting points for the next turn. If one of the players 
annot move � the

other wins this turn of the game. The Player loses abundantly if there are no


orresponding transition for Opponent's move. The Player wins any in�nite

turn of the game or any repeated 
on�guration.

Figure 3: Example of nonbisimilar and bisimilar automata

In the �rst 
ase, after reading the symbol 0 the Player must be in a state

t1 or t2, then the road runs out to him, a

ordingly, or for the symbol 2 or 1.
Systems are not bisimilar.

In the se
ond example, we see that for ea
h state and ea
h symbol the

Player will always �nd a 
orresponding way in the se
ond automaton, so the

automata are bisimilar.

4. Bisimulation for probabilisti
 and quantum
systems

To de�ne a bisimulation relation for probabilisti
 and quantum automata, one


an wonder how to 
ompare distributions of probabilities. For this purpose

we use the following de�nitions.

Let R ⊆ S × T be a relation between sets S and T . Let P1 ∈ D(S)
and P2 ∈ D(T ) be probability distributions. De�ne P1 ≡R P2 i� there exists

a distribution Pr ∈ D(S × T ) su
h that Pr(s, T ) = P1(s) for any s ∈ S,
Pr(S, t) = P2(t) for any t ∈ T , Pr(s, t) �= 0 i� (s, t) ∈ R [10℄.

Let R be an equivalen
e relation on the set S and let P1, P2 ∈ D(S) be

probability distributions. Then P1 ≡R P2 ⇐⇒ ∀C ∈ S/R : P1(C) = P2(C),
where C is an abstra
t 
lass [10℄.
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Let R be an equivalen
e relation on the set S, A be an arbitrary set, and

let P1, P2 ∈ D(S) be probability distributions. Then P1 ≡R,A P2 ⇐⇒ ∀C ∈
S/R,∀a ∈ A : P1(a,C) = P2(a,C) [10℄.

An equivalen
e relation on a set of states Q of a Markov 
hain (Q, δ) will

be a bisimulation relation i� ∀(q, t) ∈ R the following holds: if δ(q) = P1, then

there exists δ(t) = P2 su
h that P1 ≡R P2.

Let PA1 = (S,Σ, δS) and PA2 = (T,Σ, δT ) be two probabilisti
 automata,

then there exists a bisimulation relation R ⊆ S × T if for all pairs (s, t) ∈ R
and for all σ ∈ Σ we have: if δS(s, σ) = P1, then there exists a probability

distribution P2 su
h that for some t ∈ T there exists δT (t, σ) = P2 and

P1 ≡R,Σ P2 [10℄.

Figure 4: Bisimilar PA

Finally let us go to the bisimulation of the quantum automata, in this 
ase

we have to 
ompare the linear operators.

For the given operator Vσ we de�ne vσ(S) =
∑

q′∈S |δ(q, σ, q′)|2 (the sum

of squares of the values of ruthless amplitudes), where S ⊆ Q.

Let R be an equivalen
e relation on the set S, A be an arbitrary set,

and V1, V2 be unitary operators 
orresponding to transitions of the quantum

system. Then V1 ≡R,A V2 ⇐⇒ ∀C ∈ S/R, ∀a ∈ A : v1a(C) = v2a(C).

Figure 5: Bisimilar 1-way QFA

Let 1QFA1 = (S,Σ, δS) and 1QFA2 = (T,Σ, δT ) be two one-way quantum

�nite automata. Then there exists a bisimulation relation R ⊆ S ×T if for all

pairs (s, t) ∈ R and for all σ ∈ Σ we have: if V1σ(|s〉) =
∑

s′∈S δS(s, σ, s′)|s′〉,
then there exists V2σ(|t〉) =

∑
t′∈T δT (t, σ, t′)|t′〉 su
h that V1 ≡R,Σ V2.
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5. Summary

A bisimulation relation 
an be a great tool to sear
h for systems that simulate

ea
h other, and therefore their behavior is analogous to the same symbols,

a
tions, impulses.

The simple way for 
he
king whether or not two 
lassi
al systems are

bisimilar is a game, but for probabilisti
 and quantum systems we have to


onsider the sum of probabilities and amplitudes.

Bisimulation 
an also be a foundation for relations useful, for example, in

minimization of systems [8℄, [9℄.
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