PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Concentration and elemental composition of quasi-ultrafine particles in Upper Silesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The ambient concentrations and elemental composition of particles with aerodynamic diameters between 30 and 108 nm (quasi-ultrafine particles, q-UFP) were studied. The data came from 6 sites in Katowice and Zabrze, big cities in Upper Silesia, where particulate matter was sampled at urban background site and crossroads in Katowice and Zabrze, at highway in Katowice, and at urban road in Zabrze. The ambient concentrations of q-UFP and of 24 q-UFP-bound elements at these six sampling sites have been discussed in the paper. The q-UFP mass concentrations in Upper Silesia did not appear high, they were not higher than in other areas. The percentages of the total mass of the examined elements in the q-UFP mass suggest that in Upper Silesia, within a typical residential area, q-UFP consist mainly of primary matter. At the sites under strong influence of road traffic emissions, where the contributions of the examined elements to the q-UFP mass were small, most probably, carbonaceous matter and elemental carbon build the core q-UFP mass. The majority of the elements in q-UFP are anthropogenic. Clear effects of local PM sources can be seen on the ambient concentrations of q-UFP-bound Al, Si, S, Cl, K, Sc, Ti, V, Cd, Cr, Mn, Co, and Sb.
Rocznik
Strony
171--184
Opis fizyczny
Bibliogr. 33 poz., tab., rys.
Twórcy
  • The Main School of Fire Service, Faculty of Fire Safety Engineering, ul. Słowackiego 52/54, 01-629 Warsaw, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, ul. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Bibliografia
  • [1] ROGULA-KOZŁOWSKA W., MAJEWSKI G., CZECHOWSKI P.O., The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area, Environ. Monit. Asses., 2015, 187 (5), 240.
  • [2] ROGULA-KOZŁOWSKA W., Traffic-generated changes in the chemical characteristics of size-segregated urban aerosols, B Environ. Contam. Tox., 2014, 93 (4), 493.
  • [3] ROGULA-KOZŁOWSKA W., Size-segregated urban particulate matter: mass closure, chemical composition, and primary and secondary matter content, Air Qual. Atmos. Health, 2016, 9 (5), 533.
  • [4] SALMA I., BORSOS T., WEIDINGER T., ALTO P., HUSSEIN T., DAL MASO M., KULMALA M., Production, growth and properties of ultrafine atmospheric aerosol particles in an urban environment, Atmos. Chem. Phys., 2011, 11, 1339.
  • [5] KUMAR P., MORAWSKA L., BIRMILI W., PAASONEN P., HUG M., KULMALAE M., HARRISON R.M., NORFORD L., BRITTERK R., Ultrafine particles in cities, Environ. Int., 2014, 66, 1.
  • [6] MA N., BIRMILI W., Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere, Sci. Tot. Environ., 2015, 512, 154.
  • [7] DAMETO DE ESPANA C., WONASCHÜTZ A., STEINER G., ROSATI A., DEMATTIOA A., SCHUHA H., HITZENBERGER R., Long-term quantitative field study of New Particle Formation (NPF) events as a source of Cloud Condensation Nuclei (CCN) in the urban background of Vienna, Atmos. Environ., 2017, 164, 289.
  • [8] OBERDORSTER G., SHARP Z., ATUDOREI V., ELDER A., GELEIN R., LUNTS A., KREYLING W., COX C., Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation 700 exposure of rats, J. Toxicol. Environ. Health A, 2002, 65, 1531.
  • [9] WILSON M.R., LIGHTBODY J.H., DONALDSON K., SALES J., STONE V., Interactions between ultrafine particles and transition metals in vivo and in vitro, Tox. Appl. Pharmacol., 2002, 184, 172.
  • [10] GWINN M.R., VALLYATHAN V., Nanoparticles. Health effects – pros and cons., Environ Health Perspect., 2006, 114 (12), 1818.
  • [11] LU S., ZHANG W., ZHANG R., LIU P. WANG Q., SHANG Y., WU M., DONALDSON K., WANG Q., Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles, Part. Fibre Tox., 2015, 12 (5).
  • [12] CORSINI E., VECCHI R., MARABINI L., FERMO P., BECAGLI S., BERNARDONI V., CARUSO D., CORBELLA L., DELL’ACQUA M., GALLI C.L., LONATI G., OZGEN S., PAPALE A., SIGNORINI S., TARDIVO R., VALLI G., MARINOVICH M., The chemical composition of ultrafine particles and associated biological effects at an alpine town impacted by wood burning, Sci. Tot. Environ. 2017, 587, 223.
  • [13] VINZENTS P.S., LOLLER P., SORENSEN M., KNUDSENL., HERTEL O., JENSEN FP., SCHIBYE B., STEFFEN-LOFT S., Personal exposure to ultrafine particles and oxidative DNA damage, Environ. Health Perspect., 2005, 113, 1485.
  • [14] CORLIN L., WOODIN M., HART J.E., SIMON M.C., GUTE D.M., JOANNA STOWELL J.,TUCKER K.L., DURANT J.L., BRUGGE D., Longitudinal associations of long-term exposure to ultrafine particles with blood pressure and systemic inflammation in Puerto Rican adults, Environ. Health, 2018, 17 (1), 33.
  • [15] BADYDA A., GAYER A., CZECHOWSKI P. O., MAJEWSKI G., DĄBROWIECKI P., Pulmonary function and incidence of selected respiratory diseases depending on the exposure to ambient PM10, Int. J. Mol. Sci., 2016, 17 (11), 1954.
  • [16] SÓWKA I., CHLEBOWSKA-STYŚ A., PACHURKA Ł., ROGULA-KOZŁOWSKA W., Seasonal variations of PM2.5 and PM10 concentrations and inhalation exposure from PM-bound metals (As, Cd, Ni). First studies in Poznań (Poland), Arch. Environ. Prot. 2018, 44 (4), 86.
  • [17] ROGULA-KOZŁOWSKA W., KLEJNOWSKI K., ROGULA-KOPIEC P., LESZEK OŚRÓDKA L., EWA KRAJNY E., BŁASZCZAK B., MATHEWS B., Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland, Air Qual. Atmos. Health, 2014, 7 (1), 41.
  • [18] ROGULA-KOZŁOWSKA W., MAJEWSKI G., BŁASZCZAK B. KLEJNOWSKI K., ROGULA-KOPIEC P., Origin-oriented elemental profile of fine ambient particulate matter in central European suburban conditions, Int. J. Environ. Res. Publ. Health, 2016, 13 (7), 715.
  • [19] POSNER L.N., PANDIS S.N., Sources of ultrafine particles in the Eastern United States, Atmos. Environ., 2015, 111, 103.
  • [20] WIDZIEWICZ K., ROGULA-KOZŁOWSKA W., Urban environment as a factor modulating metals deposition in the respiratory track and associated cancer risk, Atmos. Pollut. Res., 2018, 9 (3), 399.
  • [21] EC Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe, 2008.
  • [22] YU X., VENECEK M., HU J., TANRIKULU S., SOON S.-T., TRAN C., FAIRLEY D., KLEEMAN M., Sources of airborne ultrafine particle number and mass concentrations in California, Atmos. Chem. Phys. Discuss., 2018.
  • [23] CHINA S., SALVADORI N., MAZZOLENI C., Effect of traffic and driving characteristics on morphology of atmospheric soot particles at freeway on-ramps, Environ. Sci. Technol., 2014, 48 (6), 3128.
  • [24] TIAN H., LIU K., ZHOU J., LU L., HAO J., QIU P., GAO J., ZHU C., WANG K., HUA S., Atmospheric emission inventory of hazardous trace elements from China’s coal-fired power plants. Temporal trends and spatial variation characteristics, Environ. Sci. Technol. 2014, 48 (6), 3575.
  • [25] ZHANG K.,CHAI F., ZHENG Z., YANG Q., ZHONG X., FOMBA KW., ZHOU G., Size distribution and source of heavy metals in particulate matter on the lead and zinc smelting affected area, J. Environ. Sci., 2018, 71, 188.
  • [26] KOLKER A., Minor element distribution in iron disulfides in coal. A geochemical review, Int. J. Coal Geol., 2012, 94, 32.
  • [27] IZQUIERDO M., QUEROL X., Leaching behavior of elements from coal combustion fly ash. An overview, Int. J. Coal Geol., 2012, 94, 54.
  • [28] VEJAHATI F., XU Z., GUPTA R., Trace elements in coal. Associations with coal and minerals and their behavior during coal utilization. A review, Fuel, 2010, 89 (4), 904.
  • [29] PENKAŁA M., OGRODNIK P., ROGULA-KOZŁOWSKA W., Particulate matter from the road surface abrasion as a problem of non-exhaust emission control, Environ., 2018, 5 (1), 9.
  • [30] JOHANSSON C., NORMAN M., BURMAN L., Road traffic emission factors for heavy metals, Atmos. Environ., 2009, 43 (31), 4681.
  • [31] ELREFAEY A., TILLMANN W., Brazing of titanium to steel with different filler metals. Analysis and comparison, J. Mat. Sci., 2010, 45 (16), 4332.
  • [32] WEIR A., WESTERHOFF1 P., FABRICIUS L., GOETZ N., Titanium dioxide nanoparticles in food and personal care products, Environ. Sci. Technol., 2012, 46 (4), 2242.
  • [33] WEDEPOHL K.H., The composition of the continental crust, Geochim. Cosmochim. Acta, 1995, 59, 1217.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0aa36f0c-edee-4777-885f-01ca03b1a959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.