PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical energy conversion characteristics based on underwater high-voltage pulse discharge

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underwater high-voltage (HV) pulse discharge mainly involves the process of HV discharge, breaking down water and releasing huge amounts of electrical energy, which is then rapidly converted into plasma. The plasma expands and creates shock waves and bubble pulsation effects. These effects are the main ways in which electrical energy transfers into mechanical energy. A breakdown process analysis model and an experimental method are proposed with a view to revealing the energy conversion characteristics during underwater pulse discharge and to understand the basic physical process. A plasma channel model was established in combination with the existing fundamentals of electricity and theoretical analysis. In addition, the discharge process was analyzed, along with shock wave and bubble pulsation action characteristics, on the basis of an underwater pulse discharge experiment. Meanwhile, theoretical analysis revealed the basic physical process involved in the electrical energy conversion effect. The results demonstrate the following: (1) The vaporization-ionization" breakdown model divides the breakdown process into three stages (i.e., heating effect, breakdown detonation and mechanical energy effect stages); (2) the heating effect stage is a phase prior to breakdown, which possesses significant heating characteristics and generates initial plasma; (3) a large electric current (104A) during the breakdown process heats the plasma channel to a high-temperature, where it becomes dense; this condition is followed by an instant decrease in channel resistance; the breakdown current peak depends on the residual voltage at the moment of breakdown; (4) during the breakdown detonation stage, discharge breakdown occurs, along with electric arc detonation. After the heating gasification process, when the electrical field intensity is suficient, the high-temperature HV plasma rapidly expands outward, resulting in a rapid conversion from electrical energy to mechanical energy. Thus, shock waves are formed, followed by bubble pulsation. The proposed method provides a good prospect for the application of underwater HV pulse discharge technology in the field of engineering.
Rocznik
Strony
190--201
Opis fizyczny
Bibliogr. 26 poz., fot., rys., wykr.
Twórcy
autor
  • College of Architecture and Civil Engineering, Xinyang Normal University, Henan Province, 464000, China
autor
  • College of Architecture and Civil Engineering, Xinyang Normal University, Henan Province, 464000, China
autor
  • College of Architecture and Civil Engineering, Xinyang Normal University, Henan Province, 464000, China
  • College of Architecture and Civil Engineering, Xinyang Normal University, Henan Province, 464000, China
autor
  • College of Architecture and Civil Engineering, Xinyang Normal University, Henan Province, 464000, China
autor
  • College of International Exchange, Krirk University, Bangkok, 10220, Thailand
Bibliografia
  • [1] B. Yang, L. Lei, and M.H. Zhou. Effects of the Liquid Conductivity on Pulsed High-voltage Discharge Modes in Water. Chinese Chemical Letter, 15(10):1215-1218, 2014.
  • [2] H. Ghofrani, G.M. Atkinson, D.W. Eaton, D. Walker, B. Cheadle, R. Schultz, R. Shcherbakov, K. Tiampo, J. Gu, and R.M. Harrington. Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin. Seismological Research Letters, 87(3):1-17, 2016.
  • [3] J. Chen, H. Yu, J.C. Fan, and H.G. Wu. Channel-width dependent pressure-driven flow characteristics of shale gas in nanopores. AIP advances, 7(4):045217, 1-11, 2017.
  • [4] W. Chen, M. Olivier, R. Thierry, M. Matallah, A. De Ferron, C. La Borderie, and G. Pijaudier-Cabot. Modelling anisotropic damage and permeability of mortar under dynamic loads. European Journal of Environmental and Civil Engineering, 15(5):727-742, 2011.
  • [5] G. Touya, T. Reess, L. Pécastaing, A. Gibert, and P. Domens. Development of subsonic electrical discharges in water and measurements of the associated pressure waves. Journal of Physics D: Applied Physics, 39:5236-5244, 2006.
  • [6] W. Chen, O. Maurel, T. Reess, A.S. De Ferron, C. La Borderie, G. Pijaudier-Cabot, F. Rey-Bethbeder, and A. Jacques. Experimental study on an alternative oil stimulation technique fortight gas reservoirs based on dynamic shock waves generated by Pulsed Arc Electrohydraulic Discharges. Journal of Petroleum Science and Engineering, 88(89):67-74, 2012.
  • [7] V.Y. Ushakov. Impulse breakdown of liquids. Berlin: Springer, 2007.
  • [8] P. Bruggeman and C. Leys. Non-thermal plasmas in and in contact with liquids. J. Phys. D: Appl Phys, 42:053001, 2009.
  • [9] A. Hamdan, J. Diamond, and A. Herrmann. Dynamics of a pulsed negative nanosecond discharge on water surface and comparison with the positive discharge. Journal of Physics Communications, 5(03):035005,1-13, 2021.
  • [10] A. Hamdan, D.A. Ridani, and J. Diamond. Pulsed nanosecond air discharge in contact with water: influence of voltage polarity, amplitude, pulse width, and gap distance. Journal of Physics D: Applied Physics, 53(35):355202, 1-12, 2020.
  • [11] C. Rond, J.M. Desse, Fagnon N., X. Aubert, M. Er, G.A. Vega, and X. Duten. Time-resolved diagnostics of a pin-to-pin pulsed discharge in water: pre-breakdown and breakdown analysis. Journal of Physics D: Applied Physics, 51(33):335201, 1-20, 2018.
  • [12] R.J. Wandell, H. Wang, P. Breslend, and B.R. Locke. Nanosecond pulsed plasma discharge over a owing water film: Characterization of hydrodynamics, electrical, and plasma properties and their effect on hydrogen peroxide generation. Plasma Processes and Polymers, 15(6):1-16, 2018.
  • [13] X.P. Lu, Y. Pan, K.F. Liu, and M.H. Liu. Spark model of Pulsed discharge in water. J. Appl. Phys, 90(1):24-31, 2002.
  • [14] X.P. Lu, Q. Xiong, Z.L. Xiong, J. Hu, F. Zhou, W.W. Gong, Y.B. Xian, C.L. Zhou, Z.Y. Tang, Z.H. Jiang, and Y. Pan. A cold plasma cross made of three bullet-like plasma plumes. Thin Solid Films, 518(3):967-970, 2009.
  • [15] D. Ye, Y. Yu, L. Liu, X. P. Lu, and Y. Wu. Cold plasma welding of polyaniline nanofibers with enhanced electrical and mechanical properties. Nanotechnology, 26(49):495302, 2015.
  • [16] Y. Li, Y. Sun, Y. Liu, L.C. Zhang, J.L Zheng, Y.F. Huang, X.Z. Xu, and Y.H. Sun. Electrohydraulic Effect and Sparker Source: Current Situation and Prospects. High Voltage Engineering, 47(3):753-765, 2021.
  • [17] A.L Fan, Y.H. Sun, and X. Z. Xu and. High-voltage Pulse Discharge Seismic Source and Its Characteristics. High Voltage Engineering, 44(3):890-895, 2018.
  • [18] R.Y. Fu, Y.H. Sun, and X.Z. Xu. Effect of hydrostatic pressure on fracture of rock subjected to plasma impact. Explosion and Shock Waves, 38(5):1051-1056, 2018.
  • [19] R. Han, H. Zhou, Q. Liu, J.Wu, Jing Y, Y. Chao, Y. Zhang, and A. Qiu. Generation of Electrohydraulic Shock Waves by Plasma-Ignited Energetic Materials: III. Shock Wave Characteristics With Three Discharge Loads. IEEE Transactions on Plasma Science, 43(12):1-7, 2015.
  • [20] D. Yan, D. Bian, J.C. Zhao, and S.Q Niu. Study of the electrical characteristics, shock-wave pressure characteristics and attenuation law based on pulse discharge in water. Shock and Vibration, 6412309:1-11, 2016.
  • [21] D. Yan, D.C. Bian, Ren F, C.Q. Yin, J.C.and Zhao, and S.Q. Niu. Study on breakdown delay characteristics based on high-voltage pulse discharge in water with hydrostatic pressure. Journal of Power Technologies, 97(2):89-102, 2017.
  • [22] Y.B. Wang, S.W. Wang, and S.W.Zeng. A Semiempirical Model for the Prebreakdown-Heating Process in the Underwater Discharge Acoustic Source. IEEE Transactions on Plasma Science, 40(1):98-111, 2012.
  • [23] Z.Q. Yin, J.C. Zhao, S.H. Jia, D.C. Bian, and Y. Dong. Experimental Study of Water Shock Load Characteristics Based on High-voltage Pulse Discharge. Coal Technology, 35(6):182-185, 2016.
  • [24] D. Yan, D. Bian, J. Zhao, Z. Yin, S. Jia, and J.Feng. Efficiency analysis of bubble pulsation formed by high voltage discharge in nonfree field water. Advances in Mechanical Engineering, 8(8):1-11, 2016.
  • [25] Yi Bo Wang. Theoretical and experimental study of the underwater plasma acoustic source. PhD thesis, National University of Defense Technology (China, Changsha), 2012.
  • [26] H.Y. Wang, Z.J. Zhou, B.C. Xiang, B.C Xiang, and Y.H Wang. Two-dimensional Dust-acoustic Solitary Waves in a Dusty Plasmawith Two-temperature Nonthermal lons. Journal of Xinyang Normal University (Natural Science Edition), 23(02):204-207, 2010.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a9f6f30-0242-4128-a546-41351f72e03d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.