PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Research on coordinated control of hydro-mechanical continuously variable transmission tractor mode switching based on model reference adaptation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The difference between the speed of the hydraulic speed control system and the mechanical transmission speed is too large during the mode-switching process of the equipped HMCVT tractor, which leads to the deterioration of the smoothness of the mode-switching process. The paper proposes a mode-switching coordination control strategy based on the adaptive model reference. Based on the mode-switching process, the mathematical model of HMCVT mode-switching is constructed. With the output speed of the hydraulic system as the reference model, the output speed of the mechanical transmission as the control object, and the output speed of the mechanical transmission following the output speed of the hydraulic system as the target, the design model reference adaptive controller, based on the MATLAB simulation platform for the simulation test of the control strategy is presented. The results show that when switching from H mode to HM1 mode, the maximum jerk is reduced by 70.3% and the slip friction work is reduced by 28.6%, and when switching from HM1 mode to H mode, the maximum jerk is reduced by 67% and the slip friction work is reduced by 28.9% compared to the use of the rule-based control strategy.
Rocznik
Strony
art. no. e154064
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Henan University of Science and Technology, China
  • State Key Laboratory of Intelligent Agricultural Power Equipment, China
  • Henan University of Science and Technology, China
  • State Key Laboratory of Intelligent Agricultural Power Equipment, China
  • YTO Group Corporation, China
autor
  • State Key Laboratory of Intelligent Agricultural Power Equipment, China
  • YTO Group Corporation, China
  • Henan University of Science and Technology, China
  • State Key Laboratory of Intelligent Agricultural Power Equipment, China
Bibliografia
  • [1] P. Linares, V. Méndez, and H. Catalán, “Design parameters for continuously variable power-split transmissions using planetaries with 3 active shafts,” J. Terramech., vol. 47, no. 5, pp. 323–335, 2010, doi: 10.1016/j.jterra.2010.04.004.
  • [2] Z. Zhu, Y. Cai, L. Chen, C. Xia, and D. Shi, “A study on parameter matching of hydro-mechanical transmission system based on genetic algorithm,” Automot. Eng., vol. 42, pp. 74–80, 2020, doi: 10.19562/j.chinasae.qcgc.2020.01.011.
  • [3] Y. Du, S. Fu, E. Mao, Z. Zhu, and Z. Li, “Develpoment situation and prospects of intelligent design for agricultural machinery,” Trans. Chin. Soc. Agric. Mach., vol. 50, no. 9, 2019, doi: 10.6041/j.issn.1000-1298.2019.09.001.
  • [4] Z. Zhong, G. Kong, Z. Yu, and G. Kong, “Review on torque interruption and its solution of automated mechanical transmission,” J. Tongji Univ. Nat. Sci., vol. 39, no. 12, pp. 1850–1855, 2011, doi: 10.3969/j.issn.0253-374x.2011.12.022.
  • [5] S. Wang et al., “Adaptive fuzzy iterative control strategy for the wet-clutch filling of automatic transmission,” Mech. Syst. Signal Process., vol. 130, pp. 164–182, 2019, doi: 10.1016/j.ymssp.2019.05.008.
  • [6] S. Ahn, J. Choi , S. Kim , J. Lee, and H. Kim, “Development of a sub-shift control algorithm for an agricultural tractor with hydro-mechanical transmission,” Adv. Mech. Eng., vol. 8, no. 11, 2016, doi: 10.1177/1687814016676943.
  • [7] Z. Guo, D. Sun, L. Xu, and R. Xu, “Research on Continuous Power Shift Process of Hydro-Mechanical Continuously Variable Transmission,” in Proc. IOP Conf. Ser. Mater. Sci. Eng., 2020, p. 012172, doi: 10.1088/1757-899X/790/1/012172.
  • [8] F. Cao, Q. Feng, C. Yang, and L. Xu, “Clutch switching timing optimization of dual-mode hydro-mechanical transmission device,” J. Xi’an Jiaotong Univ., vol. 55, pp. 86–93, 2021, doi: 10.7652/xjtuxb202101011.
  • [9] Z. Xi, Z. Zhou, M. Zhang, and Q. Cao, “Shift characteristics and control strategy of powershift transmission on Tractor,” Trans. Chin. Soc. Agric. Mach., vol. 47, no. 11, pp. 350–357, 2016, doi: 10.6041/j.issn.1000-1298.2016.11.047.
  • [10] Z. Zhu, L. Chen, L. Cao, S. Han, and Y. Zhu, “Analysis on the shift quality of hydro-mechanical continuously variable transmission,” J. Mach. Des., vol. 35, no. 1, pp. 39–45, 2018, doi: 10.13841/j.cnki.jxsj.2018.01.007.
  • [11] L. Lu, Y. Zhou, H. Li, Y. Wang, Y. Yin, and J. Zhao, “Electro-hydraulic shift quality of power shift transmission of heavy duty tractor,” Trans. Chin. Soc. Agric. Mach., vol. 51, pp. 550–556, 2020, doi: 10.6041/j.issn.1000-1298.2020.S1.065.
  • [12] G. Wang, X. Zhang, X. Li, G. Fan, H. Zhang, and R. Sun, “Analysis of shift quality of power split continuously variable transmission for tractor equipped with steel belt,” Trans. Chin. Soc. Agric Eng., vol. 35, no. 5, 2019, doi: 10.11975/j.issn.1002-6819.2019.05.008.
  • [13] G. Wang, X. Zhang, S. Zhu, H. Zhang, R. Ma, and J. Tai, “Dynamic simulation on shift process of tractor hydraulic power split continuously variable transmission during acceleration,” Trans. Chin. Soc. Agric Eng., vol. 32, no. 9, pp. 30–39, 2016, doi: 10.11975/j.issn.1002-6819.2016.09.005.
  • [14] F. Cao, G. Guo, and Y. Lei, “The shift modeling and simulation of Hydro-Mechanical Continuously Variable Transmission of tracked vehicle in turning conditions,” in Proc. IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2016, pp. 1375–1378, doi: 10.1109/IMCEC.2016.7867438.
  • [15] J. Li, H. Dong, B. Han, Y. Zhang, and Z. Zhu, “Designing comprehensive shifting control strategy of hydro-mechanical continuously variable transmission,” Appl. Sci., vol. 12, no. 11, p. 5716, 2022, doi: 10.3390/app12115716.
  • [16] K. Lu and Z. Lu, “Analysis of HMCVT shift quality based on the engagement characteristics of wet clutch,” Agriculture, vol. 12, no. 202, p. 2012, 2022, doi: 10.3390/agriculture12122012.
  • [17] Z. Zhu, J. Sheng, H. Zhang, D. Wang, and L. Chen, “Optimization of Mode-Switching Quality of Hybrid Tractor Equipped with HMCVT,” Appl. Sci., vol. 14, no. 14, p. 6288, 2024, doi: 10.3390/app14146288.
  • [18] Z. Zhu, J. Sheng, H. Zhang, D. Wang, and L. Chen, “Optimization and Analysis of Clutch Switching Timing for Hybrid Tractors Equipped with Hydraulic Mechanical Combined Transmission,” Appl. Sci., vol. 14, no. 11, p. 4914, 2024, doi: 10.3390/app14114914.
  • [19] Z. Xi, Z. Luo, F. Cao, L. Niu, and L. Xu, “Output speed control for hydro-mechanical continuously variable transmission of tractor,” Plos One, vol. 19, no. 9, p. e0308493, 2024, doi: 10.1371/journal.pone.0308493.
  • [20] J. Zhao, X. Xu, W. Guo, P. Dong, K. Yao, and X. Liu, “Energy management strategy of series–parallel hybrid transmission integrating map information and personalized driving characteristics,” eTransportation, vol. 22, p. 1003482024, doi: 10.1016/j.etran.2024.100348.
  • [21] M. Liu, W. Li, L. Xu, Y. Li, T. Zhao, and S. Hou, “Coordinated dual-rolling control of shifting in HMCVT based on KF-MPC algorithm with anti-disturbance capabilities,” Comput. Electron. Agric., vol. 227, p. 109561, 2024, doi: 10.1016/j.compag.2024.109561.
  • [22] Z. Liu, Zhi. Guo, Ying. Zhang, and Z. Zhou, “Research on shift quality of HMCVT,” Henan Univ. Sci. Technol. Nat Sci., vol. 29, no. 1, pp. 35–38, 2008, doi: 10.3969/j.issn.1672-6871.2008.01.011.
  • [23] Z. Zhu, X. Gao , D. Pan, L. Cao, S. Han, and Y. Zhu, “Research on shift control strategy of HMCVT,” Mech. Sci. Technol. Aerospace Eng., vol. 36, no. 4, pp. 527–534, 2017, doi: 10.13433/j.cnki.1003-8728.2017.0406.
  • [24] D. Pan, Z. Zhu, P. Shi, and Y. Zhu, “Characterization of non-linear dynamics of shifting in HMCVT,” Mech. Des. Manuf., no. 9, pp. 264–268, 2017, doi: 10.3969/j.cnki.1001-3997.2017.09.070.
  • [25] M. Jiang, J. Lu, B. Sun, and J. Chang, “Optimization method and simulation analysis of smoothness of shifting process in hydromechanical dual-flow transmission gearbox system,” J. Hefei Univ. Technol. (Nat. Sci. Ed.), vol. 41, no. 11, pp. 1473–1478, 2018, doi: 10.3969/j.issn.1003-5060.2018.11.007.
  • [26] M. Bao, X. Ni, X. Zhao, and S. Li, “Research on shift dynamic characteristics of HMCVT,” Mech. Des. Manuf., vol. 372, no. 2, pp. 37–41, 2022, doi: 10.3969/j.issn.1001-3997.2022.02.008.
  • [27] C. Wei, S. Yuan, J. Hu, and W. Song, “Theoretical and experimental investigationof the speed ratio follow-up control system on geometric type Hydro-mechanical transmission,” J. Mech. Eng., vol. 47, no. 16, pp. 101–105, 2011, doi: 10.3901/JME.2011.16.101.
  • [28] F. Cao, H. Li, Z. Xi, and L. Xu, “Synchronous control of mode switching process for hydro-mechanical compound transmission systems,” J. Xi’an Jiaotong Univ., vol. 53, no. 8, pp. 56–67, 2019, doi: 10.7652/xjtuxb201908008.
  • [29] S. Yang, Y. Bao, and C. Fan, “Full power shift method of hydromechanical transmission and power transition characteristics,” Trans. Chin. Soc. Agric Eng., vol. 34, no. 5, pp. 63–72, 2018, doi: 10.11975/j.issn.1002-6819.2018.05.009.
  • [30] S. Yang, M. Zhang, P. Zeng, Y. Zhang, L. Zhang, and L. Tian, “Model of regulating displacement ratio in full power shifting process of hydro-mechanical variable transmission,” Trans. Chin. Soc. Agric Eng., vol. 35, no. 13, pp. 64–73, 2019, doi: 10.11975/j.issn.1002-6819.2019.13.007.
  • [31] S. Yang, X. Jiao, Y. Bao, W. Wang, and J. Ding, “Fluid air content affecting the power shift performance of the hydro-mechanical variable transmission,” J. Mech. Eng., vol. 51, no. 14, pp. 122–130, 2015, doi: 10.3901/JME.2015.14.122.
  • [32] Z. Guo, L. Xu, D. Sun, and S. Zhang, “Modeling and simulation of continuous power shift process of hydro-mechanical continuously variable transmission,” Trans. Chin. Soc. Agric. Mach., vol. 53, no. 8, pp. 435–442, 2022, doi: 10.6041/j.issn.1000-1298.2022.08.047.
  • [33] K. Lu, Y. Lu, X. Dang, L. Wang, Y. Zhao, and Z. Lu, “Torque handover and control of HMCVT changeover clutch under theoretical changeover point,” Trans. Chin. Soc. Agric Eng., vol. 38, no. 19, pp. 23–32, 2022, doi: 10.11975/j.issn.1002-6819.2022.19.003.
  • [34] K. Lu, L. Wang, Z. Lu, H. Zhou, J. Qian, and Y. Zhao, “Sliding mode control for HMCVT shifting clutch pressure tracking based on expand observer,” Trans. Chin. Soc. Agric. Mach., vol. 54, no. 2, pp. 410–418, 2023, doi: 10.6041/j.issn.1000-1298.2023.02.043.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a9dd6d4-5fcc-4ef1-a3ee-ede63aa33788
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.