PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new application of 2–benzoylpyridine – efficient removal of silver ions from acidic aqueous solutions via adsorption process on polymeric material and classic solvent extraction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we present the results of the first application of 2–benzoylpyridine (2–BP) as a carrier in adsorptive polymeric materials dedicated for the removal of Ag(I) and Cu(II) ions from model acidic solutions. In the first stage of the research, the classical solvent extraction, in which 2–BP was used as an extractant, allowed to determine the proper conditions for conducting adsorptive processes. The stability constants of 2–BP complexes with analyzed metal ions were determined using the spectrophotometric method. The electrospray ionization (ESI) high-resolution mass spectrometry (HRMS) method was applied for the confirmation of the ability of 2–BP molecules to form complexes with Cu2 ̧ metal ions in a solution and to determine the elemental composition of generated complexes (to identify the ratio of the number of metal ions to the number of molecules of 2–BP). The obtained results indicate that both the adsorptive processes and solvent extraction strongly depend on the properties of metal ions and that the use of 2–BP as a carrier/extractant allows for efficient removal of silver(I) ions and much less effective removal of copper(II) ions. The utilization of adsorptive polymeric materials is in line with the contemporary research trends that focus on eco-friendly and cost-effective methods.
Rocznik
Strony
369--–382
Opis fizyczny
Bibliogr. 46 poz., tab., rys., wykr.
Twórcy
  • Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
  • Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
  • Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland
  • Adam Mickiewicz University, Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-712 Poznań, Poland
Bibliografia
  • 1. Almeida M.I.G.S., Cattrall R.W., Kolev S.D., 2012a. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Membr. Sci., 415-416, 9–23. DOI: 10.1016/j.memsci.2012.06.006.
  • 2. Almeida M.I.G.S., Cattrall R.W., Kolev S.D., 2012b. Polymer inclusion membranes: concept and applications. Procedia Eng., 44, 681–682. DOI: 10.1016/j.proeng.2012.08.528.
  • 3. Bożejewicz D., Ośmiałowski B., Kaczorowska M.A., Witt K., 2021a. 2,6–bis((benzoyl-R)amino)pyridine (R = H, 4-Me, and 4-NMe2) derivatives for the removal of Cu(II), Ni(II), Co(II), and Zn(II) Ions from aqueous solutions in classic solvent extraction and a membrane extraction. Membranes, 11, 233. DOI: 10.3390/membranes11040233.
  • 4. Bożejewicz D., Witt K., Kaczorowska M.A., 2021b. The comparison of the removal of copper(II) and zinc(II) ions from aqueous solution using 2,6–diaminopyridine in a polymer inclusion membrane and in a classic solvent extraction. Desalin. Water Treat., 214, 194–202. DOI: 10.5004/dwt.2021.26659.
  • 5. Bożejewicz D., Witt K., Kaczorowska M.A., Ośmiałowski B., 2019. The copper(II) ions solvent extraction with a new compound: 2,6–bis(4–methoxybenzoyl)–diaminopyridine. Processes, 7, 954. DOI: 10.3390/pr7120954.
  • 6. Carner C.A., Croft C.F., Kolev S.D., Almeida M.I.G.S., 2020. Green solvents for the fabrication of polymer inclusion membranes (PIMs). Sep. Purif. Technol., 239, 116486. DOI: 10.1016/j.seppur.2019.116486.
  • 7. Chemical Book. 2–Benzoylpyridine. Available from: www.chemicalbook.com/ChemicalProductProperty_EN_CB 9716768.htm.
  • 8. Chimuka L., Msagati T.A.M, Cukrowska E., Tutu H., 2010. Critical parameters in supported liquid membranę extraction technique for ionizable organic compounds with a stagnant acceptor phase. J. Chromatogr. A, 1217, 2318–2325. DOI: 10.1016/j.chroma.2010.01.004.
  • 9. Das D., Joshi M., Kannan S., Kumar M., Ghanty T. K., Pente A. S., Sengupta A., Kaushik C.P., 2021. Exploration of 𝑁–oxo pyridine 2–carboxamide ligands towards coordination chemistry, solvent extraction, and DFT investigation for the development of novel solvent for lanthanide and actinide separation. Polyhedron, 201, 115166. DOI: 10.1016/j.poly.2021.115166.
  • 10. Dubenskiy A.S., Yakurnova E.D., Krasilnikova Y.A., Seregina I.F., Pavlova L.A. Davankov V.A., Bolshov M.A., 2020. Heterocyclic amines: new ion-pair reagents for the simultaneous reversible sorption of noble metal chlorocomplexes on a hyper-crosslinked polystyrene sorbent. Anal. Lett., 53, 1266–1281. DOI: 10.1080/00032719.2019.1700994.
  • 11. Farahani N., Khalaj M., 2021. Synthesis, crystal structures and theoretical studies of Zinc(II) coordination compounds with 4–trifluoromethylphenyl) imino–methyl]pyridine bidentate Schiff base ligand. J. Mol. Struct., 1228, 129747. DOI: 10.1016/j.molstruc.2020.129747.
  • 12. Freitas E.D., Carmo A.C.R., Almeida Neto A.F., Vieira M.G.A., 2017. Binary adsorption of silver and copper on Verde-lodo bentonite: Kinetic and equilibrium study. Appl. Clay Sci., 137, 69–76. DOI: 10.1016/j.clay.2016.12.016.
  • 13. Han X., Wang S., Yu X., Vogt R. D., Feng J., Zhai L., Ma W., Zhu L., Lu X., 2021. Kinetics and size effects on adsorption of Cu(II), Cr(III), and Pb(II) onto polyethylene, polypropylene, and polyethylene terephthalate microplastic particles. Front. Mar. Sci., 8, 785146. DOI: 10.3389/fmars.2021.785146.
  • 14. Huang Z-Q., Cheng Z-F., 2020. Recent advanced in adsorptive membranes for harmful cations. J. Appl. Polym. Sci., 137, 48579. DOI: 10.1002/app.48579.
  • 15. Ipeaiyeda A.R., Tesi G.O., 2014. Sorption and desorption studies on toxic metals from brewery effluent using eggshell as adsorbent. Adv. Nat. Sci., 7, 15–24. DOI: 10.3968/5394.
  • 16. Keskin B., Zeytuncu-Gökoğlu B., Koyuncu I. 2021. Polymer inclusion membrane applications for transport of metal ions: A critical review. Chemosphere, 279, 130604. DOI: 10.1016/j.chemosphere.2021.130604.
  • 17. Khulbe K., Matsuura T., 2018. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci., 8, 19. DOI: 10.1007/s13201-018-0661-6.
  • 18. Kołodziejska M., Kozłowski C., Kozłowska J., Ulewicz M., 2014. Selective removal of Ag(I) and Cu(II) by plasticizer membranes with N–(diethylthiophosphoryl)aza[18]crown–6 as a carrier. Physicochem. Probl. Miner. Process., 50, 237–247. DOI: 10.5277/ppmp140120.
  • 19. Konermann L., Ahadi E., Rodriguez A.D., Vahidi S., 2013. Unraveling the mechanism of electrospray ionization. Anal. Chem., 85, 2–9. DOI: 10.1021/ac302789c.
  • 20. Kufelnicki A., Świątek M., Woźniczka M., Kalinowska-Lis U., Jezierska J., Ochocki J., 2016. Complexing properties of pyridine–4–methylene Derivatives: diethyl(pyridine–4–ylmethyl)phosphate, 4–pyridylmethylphosphonic acid and 4–hydroxymethylpyridine with Cu(II) in aqueous solution. J. Solution Chem., 45, 28–41. DOI: 10.1007/s109 53-015-0424-z.
  • 21. Li Y.-L., Gan X.-L., Zhu R.-P., Wang X., Liao D.-F., Jin J., Huang Z., 2020. Anticancer activity of platinum (II) complex with 2–benzoylpyridine by induction of DNA damage, s-phase arrest, and apoptosis. Anti-Cancer Agents Med. Chem., 20, 504–517. DOI: 10.2174/1871520619666191112114340.
  • 22. Lin Y., Vong K., Matsuoka K., Tanaka K., 2018. 2–Benzoylpyridine ligand complexation with gold critical for propargyl ester-based protein labeling. Chem. Eur. J., 24, 10595–10600. DOI: 10.1002/chem.201802058.
  • 23. Lis S., Pawlicki G., Staniszewski B., Urbaniak W., Witt K., 2011. Complexation studies of 3-substituted 𝛽–diketones with selected d– and f–metal ions. Chem. Pap., 65, 221–225. DOI: 10.2478/s11696-010-0102-y.
  • 24. López-Guerrero M.M., Granado-Castro M.D., Díaz-de-Alba M., Lande-Durán J., Casanueva-Marenco M.J., 2020. A polymer inclusion membrane for the simultaneous determination of Cu (II), Ni(II) and Cd(II) ions from natural waters. Microchem. J., 157, 104980. DOI: 10.1016/j.microc.2020.104980.
  • 25. Nitti F., Selan O.T.E., Hoque B., Tambaru D., Djunaidi M.C., 2022. Improving the performance of polymer inclusion membranes in separation process using alternative base polymers: A review. Indonesian J. Chem., 1, 284–302. DOI: 10.22146/ijc.68311.
  • 26. Nowik-Zając A., Zawierucha I., Kozlowski C., 2020. Selective transport of Ag(I) through a polymer inclusion membrane containing a calix[4]pyrrole derivative from nitrate aqueous solutions. Int. J. Mol. Sci., 21, 5348. DOI: 10.3390/ijms21155348.
  • 27. Pal S., 2018. Pyridine: A useful ligand in transition metal complexes, In: Pandey P.P. (Ed.), Pyridine. IntechOpen, London. DOI: 10.5772/intechopen.76986.
  • 28. Pearce B.H., Ogutu H.F.O., Saban W., Luckay R.C., 2019. Synthesis, characterization and use of imidazole and methyl-pyrazole based pyridine ligands as extractants for nickel(II) and copper(II). Inorg. Chim. Acta, 490, 57–67. DOI: 10.1016/j.ica.2019.02.020.
  • 29. Peloquin D.M., Schmedake T.A., 2016. Recent advances in hexacoordinate silicon with pyridine-containing ligands: Chemistry and emerging applications. Coord. Chem. Rev., 323, 107–119. DOI: 10.1016/j.ccr.2016.02.005.
  • 30. Pilśniak-Rabiega M., Wolska J., 2020. Silver(I) recovery on sulfur-containing polymeric sorbents from chloride solutions. Physicochem. Probl. Miner. Process., 56, 290–310. DOI: 10.37190/ppmp/130400.
  • 31. Shao L., 2020. Grand challenges in emerging separation technologies. Front. Environ. Chem., 1, 3. DOI: 10.3389/fenvc.2020.00003. Steczek L., Narbutt J.,
  • 32. Charbonnel M.C., Moisy P., 2019. Solvent extraction investigations on Pu(IV) and Th(IV) complexes with hydrophilic SO3–Ph–BTP and SO3–Ph–BTBP ligands. Solvent Extr. Ion Exch., 37, 259–268. DOI: 10.1080/07366299.2019.1639366.
  • 33. Sun Z., Cao H., Xiao Y., Sitsma J., Jin W., Agterhuis H., Yang Y., 2017. Toward sustainability for recovery of critical metals from electronic waste: the hydrochemistry processes. ACS Sustainable Chem. Eng., 5, 21–40. DOI: 10.1021/acssuschemeng.6b00841.
  • 34. Tanha Z.K., Moftakhar M.K., Yaftian M.R., Noshiranzadeh N., 2016. Slective and effective solvent extraction of copper(II) ions from chloride solution by oxime extractants. Anal. Bioanal. Chem. Res., 3, 53–63. DOI: 10.22036/abcr.2016.13637.
  • 35. Tasaki T., Oshima T., Baba Y., 2007. Selective extraction and transport of copper(II) with new alkylated pyridinecar-boxylic acid derivatives. Talanta, 73, 387–393. DOI: 10.1016/j.talanta.2007.04.001.
  • 36. Tuncuk A., 2019. Lab scale optimization and two-step sequential bench scale reactor leaching tests for the chemical dissolution of Cu, Au & Ag from waste electrical and electronic equipment (WEEE). Waste Manage., 95, 636–643. DOI: 10.1016/j.wasman.2019.07.008.
  • 37. Vo T.S., Hossain M.M., Jeong H.M. Kim K., 2020. Heavy metal removal applications using adsorptive membranes. Nano Convergence, 7, 36. DOI: 10.1186/s40580-020-00245-4.
  • 38. Wang R., Zhao Z., Zhang H., Sheng C., Wang Y., Jiang K., 2020. Formation of the exceptional [M–H] ̧ cation in atmospheric pressure ionization mass spectrometry analysis of 2-(diphenylsilyl) cyclopropanecarboxylate esters. Rapid Commun. Mass Spectrom., 34, e8866. DOI: 10.1002/rcm.8866.
  • 39. Werlinger F., Rojas R.S., 2020. Evaluation of novel imino-phenol ligands in divalent metal ion extraction/recovery processes from leaching solutions. Sep. Purif. Technol., 252, 117451. DOI: 10.1016/j.seppur.2020.117451.
  • 40. Wojciechowska I., Wieszczycka K., Aksamitowski P., Wojciechowska A., 2017. Copper recovery from chloride solutions using liquid extraction with pyridinecarboximidamides as extractants. Sep. Purif. Technol., 187, 319–326. DOI: 10.1016/j.seppur.2017.06.051.
  • 41. Xian F., Hendrickson C.L., Marshall A.G., 2012. High resolution mass spectrometry. Anal. Chem., 84, 708–719. DOI: 10.1021/ac203191t.
  • 42. Zante G., Boltoeva, M., Masmoudi, A., Barillon, R., Trébouet, D., 2022. Supported ionic liquid and polimer inclusion membranes for metal separation. Sep. Purif. Rev., 51, 100–116. DOI: 10.1080/15422119.2020.1846564.
  • 43. Zgoła-Grześkowiak A., 2010. Application of DLLME to isolation and concentration of non-steroidal anti-inflam-matory drugs in environmental water samples. Chrom., 72, 671–678. DOI: 10.1365/s10337-010-1702-y.
  • 44. Zhang Q., Pan B., Pan B., Zhang W., Jia K., Zhang Q., 2008. Selective sorption of lead, cadmium and zinc ions by polymeric cation exchanger containg nano–Zr(HPO3Sº2. Environ. Sci. Technol., 42, 4140–4145. DOI: 10.1021/es800354b.
  • 45. Zhao H., Ma B., Hong S., Huang H., Liu F., Sohn H.Y., 2021. Recovery of copper and cobalt from converter slags via reduction–sulfurization smelting using spent pot lining as the reductant. ACS Sustainable Chem. Eng., 9, 4234–4246. DOI: 10.1021/acssuschemeng.1c00444.
  • 46. Zolotukhin A.A., Korshunova A.A., Bubnov M.P., Bogomyakov A.S., Baranov E.V., Cherkasovn V.K., 2020. Nickel(II) and Cobalt(III) bis(dioxolene) complexes with di(2 pyridyl)imine ligands: Synthesis and magnetic properties. Inorg. Chim. Acta, 512, 119869. DOI: 10.1016/j.ica.2020.119869
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a9777c0-fec5-4c57-a1bc-006404e04de7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.