PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The realisation of selected signal processing functions by means of stack filters

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of the paper was to shorten the calculation time by realising all used signal processing algorithms in the form of stack filters. The architecture of these filters allows us to process signals using the advantages of hardware processing and simultaneous signal processing. This paper elaborated on the synthesis of stack filters which realise median, averaging, opening and closing operations. The novel achievement was to develop the binary box method which allows us to obtain stack filters for more complex algorithms. This method consists of two stages and requires that we construct a spatial structure of the data. This structure allows us to examine the stacking property in two steps. Obtained in this way architecture of the function is predisposed to VLSI implementation. The authors devised this method transforming the averaging filter into stack filter; however, the invented binary box method allows us to synthesise stack filter which realises more complex signal processing algorithms. The only assumption which limits the class of acceptable algorithms is the fact that the algorithm has to satisfy the stacking property at each stage of the signal processing. The proposed approach allows us to convert well-known signal processing algorithms into realisation which guarantees significantly greater speeds of signal processing.
Rocznik
Strony
193--208
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
autor
  • Silesian University of Technology, Institute of Automatic Control, 16 Akademicka St., Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Automatic Control, 16 Akademicka St., Gliwice, Poland
Bibliografia
  • [1] M. Sonka, V. Hlavac, and R. Boyle: Image Processing, Analysis and Machina Vision, 3rd ed. Thompson, (2008).
  • [2] Z. Kuś, “Dynamical Pattern Vector in Pattern Recognition with the Use of Thermal Images”, 8th International Conference on Computer and Automation Engineering (ICCAE 2016), MATEC Web of Conferences, Volume 56, (2016).
  • [3] Z. Kuś, “The Fusion of the Visual and Thermal Images on the Basis of Determining the Image Fragments which Contain Essential Details”, 8th International Conference on Computer and Automation Engineering (ICCAE 2016), MATECWeb of Conferences ,Volume 56, (2016).
  • [4] Z. Kuś and A. Nawrat, “The Method of Developing the Invariant Functions Vector for Objects Recognition from a Given Objects Set”, Innovative Simulation Systems, Eds. A. Nawrat, K. Jedrasiak, ISBN 9783319211176 9783319211183, Springer, (2016).
  • [5] Z. Kuś and A. Nawrat, “The Method of Guaranteeing the Separation between the Recognised Object and Background”, Innovative Simulation Systems, Eds. A. Nawrat, K. Jedrasiak, ISBN 9783319211176 9783319211183, Springer, (2016).
  • [6] Z. Kuś and A. Nawrat, “Minimizing the Image Resolution in order to Increase the Computing Speed without Losing the Separation of the Recognised Patterns”, Innovative Simulation Systems, Eds. A. Nawrat, K. Jedrasiak, ISBN 9783319211176 9783319211183, Springer, (2016).
  • [7] Z. Kuś and A. Nawrat, “Adjusting the Thresholds to the Recognised Pattern in order to Improve the Separation Between the Recognised Patterns”, Innovative Simulation Systems, Eds. A. Nawrat, K. Jedrasiak, ISBN 9783319211176 9783319211183, Springer, (2016).
  • [8] Z. Kuś, “The Analysis of Dynamical Properties of the Object Tracking System’s Elements”, Bull. Pol. Ac.: Tech. 64 (3), 479‒489, ISSN (Online) 2300‒1917, DOI: https://doi.org/10.1515/bpasts-2016‒0053, September 2016
  • [9] Z. Kuś and A. Nawrat, “Camera head control system with a changeable gain in a proportional regulator for object tracking”, Innovative control systems for tracked vehicle platforms. Ed. Aleksander Nawrat. Cham : Springer, (2014), (Studies in Systems, Decision and Control ; Vol. 2 2198‒4182) ISBN: 978‒3‒319‒04623‒5 (Print) 978‒3‒319‒04624‒2 (Online) DOI 10.1007/978‒3‒319‒04624‒2
  • [10] Z. Kuś and A. Nawrat, “The limitation for the angular velocity of the camera head during object tracking with the use of the UAV”, Innovative control systems for tracked vehicle platforms. Ed. Aleksander Nawrat. Cham : Springer, (2014), (Studies in Systems, Decision and Control ; Vol. 2 2198‒4182) ISBN: 978‒3‒319‒04623‒5 (Print) 978‒3‒319‒04624‒2 (Online) DOI 10.1007/978‒3‒319‒04624‒2
  • [11] M. Blachuta and R. Grygiel, “Are anti-aliasing filters really necessary for sampled-data control?”, American Control Conference, St Louis, 2009 American Control Conference, VOLS 1‒9 Book Series: Proc. of the American Control Conf. Pages: 3200‒3205, Jun 10‒12, (2009).
  • [12] M. Blachuta and R. Grygiel, “On the Effect of Anti-aliasing Filters on Sampled-Data PID Control”, 21st Chinese Control and Decision Conference, Guilin, Peoples R China, Jun 17‒19, (2009).
  • [13] R. Bieda, M. Blachuta, and R. Grygiel, “High Performance PID Control of a Cascade Tanks System as an Example for Control Teaching”, International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, Aug. 28-SEP 31, (2017).
  • [14] M. Luszczkiewicz-Piatek, “Which colour space should be chosen for robust colour image retrieval based on mixture modelling”, Image Processing and Communications Challenges 5 (IP&C 2013), Series: Advances in Intelligent Systems and Computing, vol. 233, pp. 55‒64, Springer International Publishing, (2014).
  • [15] M. Luszczkiewicz-Piatek and B. Smolka, “Robust image retrieval based on mixture modelling of weighted spatio-colour information”, Image Processing and Communications Challenges 6 (IP&C 2014), Series: Advances in Intelligent Systems and Computing, vol. 313, pp. 85‒93, Springer International Publishing, (2015).
  • [16] M. Luszczkiewicz-Piatek, “Image Similarity in Gaussian Mixture Model Based Image Retrieval”, Image Processing and Communications Challenges 7 (IP&C 2015), Series: Advances in Intelligent Systems and Computing, vol. 389, pp. 87‒95, Springer International Publishing, (2016).
  • [17] J.W. Tukey, “Nonseparable (nonsuperposable) methods for smoothing data”, in Conf. Rec., EASCON, 1974, p. 673, and Exploratory Datu Analysis. Reading, MA: Addison-Wesley, (1977).
  • [18] N.C. Gallagher, Jr. and G.L. Wise, “A theoretical analysis of the properties of median filters”, IEEE Trans. Acoust. , Speech, Signal Processing, vol. ASSP-29, pp. 1136‒1141, Dec. (1981).
  • [19] S.G. Tyan, “Median-filtering: Deterministic properties”, in Two- Dimensional Digital Signal Processing, II: Transforms and Median Filters, ch. 5. vol. 42, pp. 197‒217, Topics in Applied Physics, T. S . Huang, Ed. New York: Springer-Verlag. (1981).
  • [20] T. Nodes and N.C. Gallagher. , “Median filters: Some modifications and their properties”, IEEE Trans. Acoust. , Speech, Signal Processing, vol. ASSP-30, pp, 739‒746. Oct. (1982).
  • [21] G. Matheron: Random Sets and Integral Geometry, New York: Wiley, 1975.
  • [22] P.D.Wendt, E.J. Coyle, and N.C. Gallagher. Jr., “Stack filters”, IEEE Trans. Acoust. Speech. Signal Processing, vol. ASSP-34, pp. 898‒911 , Aug. (1986).
  • [23] M. Gabbouj, “Optimal stack filter examples and positive Boolean functions”, M.S. thesis, School Elec. Eng. Purdue Univ., West Lafayette, IN. Dec. (1986).
  • [24] J.H. Lin and E. Coyle, “Minimum Mean Absolute Error Estimation over the Class of Generalized Stack Filters”, IEEE Transactions On Acoustics, Speech And Signal Processing, vol. 38, No. 4, April (1990).
  • [25] B. Zeng, M. Gabbouj, and Y. Neuvo, “Design of minimum MAE generalized stack filters for image processing”, SPIE vol. 1606 Visual Communications and Image Processing ’91: Image Processing, (1991).
  • [26] P. Maragos and R.W. Schafer, “Morphological filters–Part I: Their set-theoretic analysis and relations to linear shift-invariant filters”, Acoustics, Speech and Signal Processing, IEEE Transactions on, Volume: 35, Issue: 8, August (1987).
  • [27] P. Maragos and R. W. Schafer, “Morphological filters–Part II: Their relations to median, order-statistic, and stack filters”, Acoustics, Speech and Signal Processing, IEEE Transactions on, Volume: 35, Issue: 8, August (1987).
  • [28] I. Serra: Image Analysis and Mathematical Morphology, New York: Academic, (1982).
  • [29] H. Minkowski, “Volumen und Oberflache”, Math. Annalen, vol. 57, pp.447‒495, (1903).
  • [30] H. Hadwiger: Vorlesungen uber Inhalt, Oberflache und Isoperimetrie, Berlin, Germany: Springer-Verlag, (1957).
  • [31] M. Nieniewski: Mathematical Morphology for Image Processing, in Polish, AOW, Warszawa, (1998).
  • [32] M. Mondelli, “A Finite Difference Scheme for the Stack Filter Simulating the MCM”, Image Processing On Line, ISSN 2105‒1232 c 2013 IPOL & the authors CC-BY-NC-SA, (2013‒07‒11).
  • [33] T. Suzuki, Y. Hanada, and M. Muneyasu, “Unsupervised design of stack filters by tree structure optimization”, 8th International Conference on Information, Communications & Signal Processing, (2011).
  • [34] K. Yan, Y. Hongwei, and F. Jiayin, “Design of optimal stack filters using QPSO”, The 2nd International Conference on Information Science and Engineering, (2010).
  • [35] A. Frias-Velazquez and W. Philips, “Bit-plane stack filter algorithm for focal plane processors”, IEEE International Conference on Image Processing, (2010).
  • [36] Y. Tian, Ch. Zhao, “Design of Optimizing Stack Filters by an Ant Colony – Clonal Selection Algorithm”, Chinese Conference on Pattern Recognition, (2009).
  • [37] M. E. Buemi, M. Mejail, J. Jacobo, J. Gambini, “Improvement in SAR Image Classification using Adaptive Stack Filters”, XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007). (2007).
  • [38] D. Dellamonica, P.J.S. Silva, C. Humes, N.S.T. Hirata, and J. Barrera, “An Exact Algorithm for Optimal MAE Stack Filter Design”, IEEE Transactions on Image Processing, Volume: 16, Issue: 2, Pages: 453 – 462, August (1987).
  • [39] Ch. Zhao, Ch. Zhang, H. Ning, and Y. Cui, “Optimizing Stack Filters by Clone Selection Algorithm”, 8th international Conference on Signal Processing, Volume: 1, (2006).
  • [40] G. Shi, W. Dong, and Z. Liu, “Design and implementation of stack filter based on immune memory clonal algorithms with hybrid computation”, 48th Midwest Symposium on Circuits and Systems, (2005).
  • [41] M.K. Prasad, “Stack filter design using selection probabilities”, IEEE Transactions on Signal Processing, Volume: 53, Issue: 3 Pages: 1025–1037, (2005).
  • [42] D. Diaz and J.L. Paredes, “FPGA implementation of a new family of stack filters”, Proceedings of the Fifth IEEE International Caracas Conference on Devices, Circuits and Systems, Volume: 1, Pages: 152–157, (2004).
  • [43] S. Guangming, S. Liya, L. Honghua, and H. Daojun, “Dynamic nonlinear threshold decomposition algorithm for implementing stack filters”, IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512) Volume:3, Pages: III – 641‒4, Vol. 3, (2004).
  • [44] J. Huang and E.J. Coyle, “Using models of the Human Visual System in the design of stack filters for the enhancement of color images”, 10th European Signal Processing Conference, (2000).
  • [45] C. Toumazou, N. Battersby, and S. Porta, “Stack Filters in Signal and Image Processing”, Circuits and Systems Tutorials, Pages: 22 – 39, Wiley-IEEE Press eBook Chapters, (1996).
  • [46] D. Gevorkian, M. Hu, O. Vainio, and J. Astola, “VLSI architecture for stack filters”, Digital Signal Processing Proceedings, 1997. DSP 97., 13th International Conference on, (1997).
  • [47] J. Astola, S. Agaian, K. Egiazarian, O. Vainio, and D. Gevorkian, “High-speed algorithms and an architecture for running stack filters”, Proceedings of Int. Conf. on Digital Signal Processing, (1995).
  • [48] A. Hiasat, O. Hasan, “Bit-serial architecture for rank order and stack filters”, Integration, the VLSI Journal archive, Volume 36 Issue 1‒2,Pages 3‒12, (2003).
  • [49] T. Yamamoto and V.G. Moshnyaga, “A New Bit-Serial Architecture of Rank-Order Filter”, Conference Paper in Midwest Symposium on Circuits and Systems, (2009).
  • [50] M.J. Avedillo, J.M. Quintana, H. Alami, and A. Jimenez-Calderon, “A Practical Parallel Architecture for Stacks Filters”, Journal of VLSI signal processing systems for signal, image and video technology, Volume 38, Issue 2, pp 91‒100, (2004).
  • [51] C. Chakrabarti, “Efficient stack filter implementations of rank order filters”, Circuits and Systems, ISCAS ’93, IEEE International Symposium on, (1993).
  • [52] C. Chakrabarti and L. Lucke, “VLSI Architectures for Weighted order Statistic (WOS) Filters”, Circuits and Systems, ISCAS ’98. Proceedings of the 1998 IEEE International Symposium on, (1998).
  • [53] K. Chen, “Bit-Serial Realization of a Class of Nonlinear Filters Based on Positive Boolean Functions”, IEEE Transactions on Circuits and Systems, Volume: 36, Issue: 6, Pages: 785–794, (Jun 1989).
  • [54] D.Z. Gevorkian, K.O. Egiazarian, S.S. Agaian, J.T. Astola, and O. Vainio, “Parallel algorithms and VLSI architectures for stack filtering using Fibonacci p-codes”, IEEE Transactions on Signal Processing, Volume: 43, Issue: 1, Page(s): 286 – 295, Jan (1995).
  • [55] J. Astola, D. Akopian, O. Vainio, and S. Agaian, “New digit-serial implementations of stack filters”, Signal Processing, Volume 61, Issue 2, Pages 181‒197, September (1997).
  • [56] J.P. Fitch, “Software and VLSI algorithms for generalized ranked order filtering”, IEEE Transactions on Circuits and Systems, Volume: 34, Issue: 5, Page(s): 553 – 559, May (1987).
  • [57] G.B. Adams, E.J. Coyle, L. Lin, L.E. Lucke, K.K. Parhi, “Input compression and efficient VLSI architectures for rank order and stack filters”, Signal Processing, Volume 38, Issue 3, Pages 441‒453, August (1994).
  • [58] R.G. Bartle: The Elements of Real Analysis, New York: Wiley, (1968).
  • [59] H.L. Royden: Real Analysis, New York: Macmillan Library Reference, ISBN 10: 0024041505 ISBN 13: 9780024041500 (1968).
  • [60] A. Kordecki, A. Bal, and H. Palus, “A smooth local polynomial model of vignetting”, 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), DOI: 10.1109/MMAR.2017.8046944, August (2017).
  • [61] A. Kordecki, A. Bal, and H. Palus, “Fast vignetting reduction method”, 20th International Conference on Methods and Models in Automation and Robotics (MMAR), At Miedzyzroje, Poland, DOI: 10.1109/MMAR.2015.7284040, August (2015).
  • [62] A. Kordecki, H. Palus , and A. Bal, “Practical vignetting correction method for digital camera with measurement of surface luminance distribution”, Signal Image and Video Processing 10(8), DOI: 10.1007/s11760‒016‒0941‒2, License: CC BY 4.0, July (2016).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a97191c-582d-4f10-8b64-e06db47759fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.