Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The chemical composition of bulk deposition is an important aspect of assessing ambient air pollution. It contributes significantly to the removal of pollutants from the atmosphere and their transfer to other ecosystems. Thus, it is a reliable determinant of environmental chemistry. Therefore, bulk deposition can be considered useful for tracking the migration path of substances from different sources. The aim of the study carried out at five measurement points in Zabrze and Bytom was to assess the content of selected physico-chemical parameters in bulk deposition. Samples were collected continuously from November 2019 to November 2020. In the collected samples the following were determined: COD, pH, conductivity, dissolved organic carbon, inorganic carbon and total carbon; inorganic anions (Cl-, SO42-, NO3-, NO2-, Br-, PO43-) and cations (Li+, Mg2+, Ca2+, Na+, K+, NH4+), metals and metalloids (Mn, Ni, Co, Cu, Zn, As, Cd, Pb, Cr, and Fe), and carboxylic acids (formic, acetic, oxalic). The obtained test results were statistically processed using Excel, and the normality of data distribution was verified by Shapiro-Wilk test. The results show that pollutants transported in the atmosphere and introduced with precipitation in the Zabrze and Bytom areas are a significant source of area pollution of the region.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
106--116
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Bibliografia
- 1. Azimi, S., Ludwig, A., Thevenot, D.R., & Colin, J.L. (2003). Trace metal determination in total atmospheric deposition in rural and urban areas, Science of the total environment, 308, 1–3, pp. 247–256. DOI: 10.1016/S0048-9697(02)00678-2
- 2. Czaplicka, M., Jaworek, K., & Wochnik, A. (2014). Determination of aldehydes in wet deposition, Archives of Environmental Protection, 40, 2, pp. 21–31. DOI: 10.2478/aep-2014-0011
- 3. D’Alessandro, W., Katsanou, K., Lambrakis, N., Bellomo, S., Brusca, L., & Liotta, M. (2013). Chemical and isotopic characterisation of bulk deposition in the Louros basin (Epirus, Greece). Atmospheric research, 132, pp. 399–410. DOI: 10.1016/j.atmosres.2013.07.007
- 4. EASAC – the European Academies’ Science Advisory Council (2020). Towards a sustainable future: transformative change and post- -COVID-19 priorities. A Perspective by EASAC’s Environment Programme, (https://easac.eu/fileadmin/user_upload/EASAC_ Perspective_on_Transformative_Change_Web_complete.pdf (12.01.2022)
- 5. Fowler, J., Cohen, L., & Jarvis, P. (2013). Practical statistics for field biology, John Wiley & Sons, Hoboken 2013.
- 6. Huston, R., Chan, Y.C., Gardner, T., Shaw, G., & Chapman, H. (2009). Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks, Water Research, 43, 6, pp. 1630–1640. DOI: 10.1016/j.watres.2008.12.045
- 7. IMGW-PIB – Institute of Meteorology and Water Management – National Research Institute (2018). Precipitation chemistry monitoring and assessment of pollutant deposition to the ground in 2016–2018. Results of monitoring studies in the Silesian Voivodeship in 2017 (in Polish), (http://www.katowice.wios.gov.pl/monitoring/informacje/stan2017/opady.pdf (12.01.2022))
- 8. Kosior, G., Samecka-Cymerman, A., & Brudzińska-Kosior, A. (2018). Transplanted Moss Hylocomium splendens as a Bioaccumulator of Trace Elements from Different Categories of Sampling Sites in the Upper Silesia Area (SW Poland): Bulk and Dry Deposition Impact, Bulletin of Environmental Contamination and Toxicology, 101, 24, pp. 479–485. DOI: 10.1007/s00128-018-2429-y
- 9. Kurwadkar, S., Kanel, S.R., & Nakarmi, A. (2020). Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants, Water Environment Research, 92, 10, pp. 1659–1668. DOI: 10.1002/wer.1415
- 10. Liu, Z., Yang, J., Zhang, J., Xiang, H., & Wei, H. (2019). Abibliometric analysis of research on acid rain, Sustainability, 11, 11, 3077. DOI: 10.3390/su11113077
- 11. Nowak, A., Korszun-Kłak, K., & Zielonka, U. (2014). Long-Term Measurments of Atmospheric Mercury Species (TGM, TPM) and Hg Deposition in the Silesian Region, Poland: Concept of the Mercury Deposition Coefficient, Archives of Environmental Protection, 40, 3, pp. 43–60. DOI: 10.2478/aep-2014-0023
- 12. PB18 (test procedure), edition 4, 10.02.2016. The application of ICP-MS in water quality testing.
- 13. Pecyna-Utylska, P., Konieczny, T., & Michalski, R. (2021). The influence of sample pH on the determination of selected carboxylic acids by isocratic ion chromatography, Chemistry & Chemical Technology, 15, 3, pp. 319–323. DOI: 10.23939/chcht15.03.319
- 14. Pęczkowski, G., Szawernoga, K., Kowalczyk, T., Orzepowski, W., & Pokladek, R. (2020). Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia, Sustainability, 12, 11, 4793. DOI: 10.3390/su12114793
- 15. PN-EN 1484:1999 standard. Water Quality – Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).
- 16. PN-EN 27888:1999 standard. Water Quality – Determination of electrical conductivity.
- 17. PN-EN ISO 10304-1:2009 standard. Water Quality – Determination of dissolved anions by liquid chromatography of ions – Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate
- 18. PN-EN ISO 10523:2012 standard. Water Quality – Determination of pH.
- 19. PN-EN ISO 11885:2009 standard. Water Quality – Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
- 20. PN-EN ISO 14911:2002 standard. Water Quality – Determination of dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+using ion chromatography — Method for water and waste water.
- 21. PN-ISO 15705:2005 standard. Water quality – Determination of the chemical oxygen demand index (ST-COD) – Small-scale sealed-tube method.
- 22. Polkowska, Z., Astel, A., Walna, B., Małek, S., Mądrzycka, K., Górecki, T., Siepak, J., & Namieśnik, J. (2005). Chemometric Analysis of Rainwater and Throughfall At Several Sites In Poland, Atmospheric Environment, 39, pp. 837–855. DOI: 10.1016/j.atmosenv.2004.10.026
- 23. Saadat, S., Rawtani, D., & Hussain, C.M. (2020). Environmental perspective of COVID-19, Science of the Total environment, 728, 138870. DOI: 10.1016/j.scitotenv.2020.138870
- 24. Sanjeeva, A., & Puttaswamaiah, S.G. (2018). Influence of Atmospheric Deposition and Roof Materials on Harvested Rainwater Quality, Journal of Environmental Engineering 144, 12, 04018121. DOI: 10.1061/(ASCE)EE.1943-7870.0001460
- 25. Siudek, P., Frankowski, M., & Siepak, J. (2015). Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland. Environmental Science and Pollution Research, 22, 14, pp. 11087–11096. DOI: 10.1007/s11356-015-4356-3
- 26. Tositti, L., Pieri, L., Brattich, E., Parmeggiani, S., & Ventura, F. (2018). Chemical characteristics of atmospheric bulk deposition in a semi-rural area of the Po Valley (Italy). Journal of Atmospheric Chemistry, 75, 1, pp. 97–121. DOI: 10.1007/s10874-017-9365-9
- 27. Wetherbee, G.A., Benedict, K.B., Murphy, S.F., & Elliott, E.M. (2019). Inorganic nitrogen wet deposition gradients in the Denver-Boulder metropolitan area and Colorado Front Range – Preliminary implications for Rocky Mountain National Park and interpolated deposition maps, Science of the total environment, 691, pp. 1027–1042. DOI: 10.1016/j.scitotenv.2019.06.528
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a928678-fd52-4869-84a8-e350ae44df03