Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents an electrochemical model for simulation and evaluation of the performance of proton exchange membrane (PEM) fuel cell. The results of the model are used to predict the efficiency and power of the fuel cell as a function of operational parameters of the cell, like temperature, partial pressures and membrane humidity. The influence of temperature on fuel cell’s characteristics is more pronounced than the influence of partial pressures and membrane humidity. The effect of platinum loading on cell performance is examined with Pt loadings of 0.18, 0.38 and 0.4 mg cm-2. The kinetic parameters (electron transfer coefficient, exchange current density) are found to be platinum loading dependent.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
27--36
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- Jijel University, Faculty of Sciences and Technology Department of Process Engineering 18000 Jijel, Algeria
autor
- University of Batna, Faculty of Sciences and Technology Department of Mechanics 05000 Batna, Algeria
Bibliografia
- [1] R. Cownden, M. Nahon, M. Rosen, Modelling and analysis of a solid polymer fuel cell system for transportation applications, International Journal of Hydrogen Energy 26 (6) (2001) 615–623. doi:10.1016/S0360-3199(00)00126-9.
- [2] A. Rowe, X. Li, Mathematical modeling of proton exchange membrane fuel cells, Journal of Power Sources 102 (1–2) (2001) 82–96. doi:10.1016/S0378-7753(01)00798-4.
- [3] D. Bevers, M. Wohr, K. Yasuda, K. Oguro, Simulation of a polymer electrolyte fuel cell electrode, Journal of Applied Electrochemistry 27 (1997) 1254–1264. doi:10.1023/A:1018488021355.
- [4] G. Maggio, V. Recupero, L. Pino, Modeling polymer electrolyte fuel cells: an innovative approach, Journal of Power Sources 101 (2) (2001) 275–286. doi:10.1016/S0378-7753(01)00758-3.
- [5] J. Amphlett, R. Mann, B. Peppley, P. Roberge, A. Rodrigues, A model predicting transient responses of proton exchange membrane fuel cells, Journal of Power Sources 61 (1–2) (1996) 183–188. doi:10.1016/S0378-7753(96)02360-9.
- [6] J. Hamelin, K. Agbossou, A. Laperrière, F. Laurencelle, T. Bose, Dynamic behavior of a pem fuel cell stack for stationary applications, International Journal of Hydrogen Energy 26 (6) (2001) 625 – 629. doi:10.1016/S0360-3199(00)00121-X.
- [7] H. P. van Bussel, F. G. Koene, R. K. Mallant, Dynamic model of solid polymer fuel cell water management, Journal of Power Sources 71 (1–2) (1998) 218–222. doi:10.1016/S0378-7753(97)02744-4.
- [8] Z. Zhang, X. Huang, J. Jiang, B. Wu, An improved dynamic model considering effects of temperature and equivalent internal resistance for pem fuel cell power modules, Journal of Power Sources 161 (2) (2006) 1062–1068. doi:10.1016/j.jpowsour.2006.05.030.
- [9] R. Chebbi, A. Beicha, W. Daud, R. Zaamouche, Surface analysis for catalyst layer (pt/ptfe/c) and diffusion layer (ptfe/c) for proton exchange membrane fuel cells systems (pemfcs), Applied Surface Science 255 (12) (2009) 6367–6371. doi:10.1016/j.apsusc.2009.02.017.
- [10] R. F. Mann, J. C. Amphlett, M. A. Hooper, H. M. Jensen, B. A. Peppley, P. R. Roberge, Development and application of a generalised steady-state electrochemical model for a pem fuel cell, Journal of Power Sources 86 (1–2)(2000) 173–180. doi:10.1016/S0378-7753(99)00484-X.
- [11] M. G. Nguyen, R. White, A water and heat management model for proton-exchange-membrane fuel cells, Journal of Electrochemical Society 140 (8) (1993) 2178–2186.
- [12] T. Springer, T. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model, Journal of Electrochemical Society 138 (8) (1991) 2334–2342.
- [13] J. H. Hirschenhofer, Fuel cell status 1994, IEEE AES Systems Magazine (1994) 10–15.
- [14] L. Jordan, A. Shukla, T. Behrsing, N. Avery, B. Muddle, M. Forsyth, Diffusion layer parameters influencing optimal fuel cell performance, Journal of Power Sources 86 (1–2) (2000) 250–254. doi:10.1016/S0378-7753(99)00489-9.
- [15] J. Song, S. Cha, W. Lee, Optimal composition of polymer electrolyte fuel cell electrodes determined by the ac impedance method, Journal of Power Sources 94 (1) (2001) 78 – 84. doi:10.1016/S0378-7753(00)00629-7.
- [16] J. Laminie, A. Dicks, Fuel cell systems explained, 2nd Edition, Wiley & Sons, England, 2005.
- [17] J. C. Amphlett, R. M. Baurnet, R. F. Mann, Performance modeling of the ballard mark iv solid polymer electrolyte fuel cell, Journal of Electrochemical Society 142 (1) (1995) 1–15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a90c7f0-0b66-4901-87d2-adc6585528f2