PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photomultipliers are commonly used in commercial PET scanner as devices that convert light produced in scintillator by gamma quanta from positron-electron annihilation into electrical signal. For proper analysis of obtained electrical signal, a photomultiplier gain curve must be known, since gain can be significantly different even between photomultipliers of the same model. In this article, we describe single photoelectron method used for photomultiplier calibration applied for J-PET scanner, a novel PET detector being developed at Jagiellonian University. A description of calibration method, an example of calibration curve, and a gain of few Hamamatsu R4998 photomultipliers are presented.
Rocznik
Strony
13--17
Opis fizyczny
Bibliogr. 9 poz., wykr.
Twórcy
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Świerk Computing Centre, National Centre for Nuclear Research, Otwock-Swierk, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Chemistry, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Świerk Computing Centre, National Centre for Nuclear Research, Otwock-Swierk, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Świerk Computing Centre, National Centre for Nuclear Research, Otwock-Swierk, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Saha GB. Basics of PET imaging, 2nd ed. New York: Springer, 2010:57.
  • 2. Website: Hamamatsu. Photomultiplier tubes and assemblies for scintillation counting & high energy physics. Available at: http://www.hamamatsu.com/resources/pdf/etd/High_energy_PMT_TPMO0007E03.pdf. Accessed: 22 Oct 2013.
  • 3. Abe K, Hayato Y, lida T, lyogi K, Kameda), Kishimoto Y, et al. Calibration of the super-Kamiokande detector. arXiv:1307.0162 [physics.ins-det].
  • 4. Ronzhin A, Albrow MG, Demarteau M, Los S, Malik S, Pronko A, et al. Development of a 10 ps level time of flight system in the fermilab test beam facility. Nucl Instrum Methods Phys Res A 2010;623:931-41.
  • 5. Baturin V, Burkert V, Kim W, Majewsky S, Nekrasov D, Park K, et al. Time resolution of Burle 85001 micro-channel plate photo-multipliers in comparison with Hamamatsu R2O83. Nucl Instrum Methods Phys Res A 2006:562:327-37.
  • 6. Moskal P, Bednarski T, Białas P, Ciszewska M, Czerwiński M, Heczko A, et al. TOF-PET detector concept based on organic scintillators. Nucl Med Rev 2012;15:(Suppl):C81.
  • 7. Website: Rexon. Plastic Scintillation Info. Available at: http://www.rexon.com/plasticsinfo.htm. Accessed: 22 Oct 2013.
  • 8. Website: Eljen Technology. E)-232. Available at: http://www.eljentechnology.com/index.php/products/plastic-scintillators/68-ej-232. Accessed: 22 Oct 2013.
  • 9. Website: Teledyne Lecroy. Available at: http://teledynelecroy. com/oscilloscope/oscilloscopemodel.aspx?modelid=1939&capid=102&mid=504. Accessed: 22 Oct 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a8ef19d-63c2-4d19-a9a7-74241daa2764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.