PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ bioprotekcji na jakość i bezpieczeństwo produktów mięsnych

Identyfikatory
Warianty tytułu
EN
The impact of bioprotection on the quality and safety of meat products
Języki publikacji
PL
Abstrakty
PL
Mięso i produkty mięsne są cennym źródłem składników odżywczych i stanowią istotny element diety człowieka, aczkolwiek z uwagi na podatność na zmiany mikrobiologiczne i chemiczne należą do produktów nietrwałych. Ma to wpływ na zwiększenie ryzyka w aspekcie bezpieczeństwa zdrowotnego, a także powoduje straty ekonomiczne dla przemysłu mięsnego. W tym kontekście poszukiwanie naturalnych rozwiązań w zakresie hamowania zmian mikrobiologicznych i chemicznych mięsa i produktów mięsnych stanowi istotne wyzwanie dla przemysłu mięsnego. Zastosowanie bioprotekcji poprzez wprowadzenie do produktu mięsnego kultur mikroorganizmów i ich metabolitów w celu poprawy bezpieczeństwa mikrobiologicznego oraz wydłużenia okresu trwałości produktów stanowi alternatywę dla chemicznych środków konserwujących w przemyśle mięsnym. Właściwa kontrola profilu mikroflory mięsa, poprzez zastosowanie wyselekcjonowanych bakterii o pożądanych właściwościach i metabolizmie, pozwala na poprawę stabilności oksydacyjnej, kształtowanie jakości sensorycznej, a przede wszystkim poprawę jakości żywieniowej produktów mięsnych.
EN
Meat and meat products are a valuable source of nutrients and constitute an important element of the human diet, although due to their susceptibility to microbiological and chemical changes, they are perishable products. This has an impact on increasing the risk in terms of health safety and also causes economic losses for the meat industry. In this context, the search for natural solutions in the field of inhibiting microbiological and chemical changes in meat and meat products is a significant challenge for the meat industry. The use of bioprotection by introducing cultures of microorganisms and their metabolites into the meat product in order to improve microbiological safety and extend the shelf life of products is an alternative to chemical preservatives in the meat industry. Proper control of the meat microflora profile by using selected bacteria with the desired properties and metabolism allows for the improvement of oxidative stability, shaping of sensory quality and, above all, improvement of the nutritional quality of meat products.
Rocznik
Strony
30--33
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Katedra Technologii Żywności Pochodzenia Zwierzęcego, Zakład Technologii Mięsa i Zarządzania Jakością, Wydział Nauk o Żywności i Biotechnologii, Uniwersytet Przyrodniczy w Lublinie
Bibliografia
  • [1] Angmo K., A. Kumari, M. Savitri, T.Ch. Bhalla. 2016. Antagonistic activities of lactic acid bacteria from fermented foods and beverage of Ladakh against Yersinia enterocolitica in refrigerated meat. Food Bioscience 13, 3: 26-31.
  • [2] Araújo M.K., A.M. Gumiela, K. Bordin, F.B. Luciano, R.E.F. Macedo. 2018. Combination of garlic essential oil, allyl isothiocyanate, and nisin Z as biopreservatives in fresh sausage. Meat Science 143: 177-183.
  • [3] Balandin S.V., E.V. Sheremeteva, T.V. Ovchinnikova. 2019. Pediocin like antimicrobial peptides of bacteria. Biochemistry 84: 464-478.
  • [4] Bali V., P.S. Panesar, M.B. Bera, J.F. Kennedy. 2016. Bacteriocins: recent trends and potential applications. Critical Review in Food Science and Nutrition 56(5): 817-834.
  • [5] Castellano P., P. Perez Ibarreche, M. Blanco Massani, C. Fontana, G.M. Vignolo. 2017. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms 5 (3): 38.
  • [6] Castellano P., N. Peña, M.P. Ibarreche, F. Carduza, T. Soteras, G. Vignolo. 2018. Antilisterial efficacy of Lactobacillus bacteriocins and organic acids on frankfurters. Impact on sensory characteristics. Journal of Food Science and Technology 55: 689-697.
  • [7] Danielski G.M., A.G. Evangelista, F.B. Luciano, R. Freitas de Macedo. E. 2022. Non-conventional cultures and metabolism derived compounds for bioprotection of meat and meat products: a review. Critical Reviews in Food Science and Nutrition 62, 4: 1105-1118.
  • [8] Das A.K., P.K. Nanda, A. Das, S. Biswas. 2019. Hazards and safety issues of meat and meat products. Food Safety and Human Health, 145-168.
  • [9] Dortu C., M. Huch, W.H. Holzapfel, C.M.A.P. Franz, P. Thonart. 2008. Anti-listerial activity of bacteriocin- producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Letters in Applied Microbiology 47:581-586.
  • [10] El-Sayed H. S., S.M. El-Sayed, A.M.M. Mabrouk et al. 2021. Development of eco-friendly probiotic edible coatings based on chitosan, alginate and carboxymethyl cellulose for improving the shelf life of UF soft cheese. Journal of Polymers and the Environment 29: 1941-1953.
  • [11] Gelinski J.M.L.N., C.M. Baratto, M. Casagrande, T.P. de Oliveira, F. Megiolaro, F.A.S. de Martini Soares, E.M.B. de Souza, V.A. Vicente, G.G. Fonsec. 2019. Control of pathogens in fresh pork sausage by inclusion of Lactobacillus sakei BAS0117. Canadian Journal of Microbiology 65, 831-841.
  • [12] Guo X., Y. Wang, S. Lu, J. Wang, H. Fu, B. Gu, B. Lyu, Q. Wang. 2021. Changes in proteolysis, protein oxidation, flavor, color and texture of dry-cured mutton ham during storage. LWT-Food Science and Technology, 149, 111860.
  • [13] Hassan A.H.A., C.N. Cutter. 2020. Development and evaluation of pullulan-based composite antimicrobial films (CAF) incorporated with nisin, thymol and lauric arginate to reduce foodborne pathogens associated with muscle foods. International Journal of Food Microbiology 320: 108519.
  • [14] Laranjo M., M.E. Potes and M. Elias. 2019. Role of starter cultures on the safety of fermented meat products. Frontiers in Microbiology 10:853.
  • [15] Morsy M.K., R. Elsabagh, V. Trinetta. 2018. Evaluation of novel synergistic antimicrobial activity of nisin, lysozyme, EDTA nanoparticles, and/or ZnO nanoparticles to control foodborne pathogens on minced beef. Food Control 92: 249-254.
  • [16] Pilevar Z., H. Hosseini, S. Beikzadeh, E. Khanniri, A.M. Alizadeh. 2020. Application of bacteriocins in meat and meat products: An update. Current Nutrition & Food Science, 16: 120-133.
  • [17] Raeisi M., A. Tabaraei, M. Hashemi, N. Behnampour. 2016. Effect of sodium alginate coating incorporated with nisin, Cinnamomum zeylanicum, and rosemary essential oils on microbial quality of chicken meat and fate of Listeria monocytogenes during refrigeration. International Journal of Food Microbiology, 238: 139-145.
  • [18] Reuben R.C., C. Torres. 2024. Bacteriocins: potentials and prospects in health and agrifood systems. Archives of Microbiology, 206: 233.
  • [19] Rosario D.K.A., B.I. Rodrigues, P.C. Bernardes, C.A. Conte-Junior. 2021. Principles and applications of non-thermal technologies and alternative chemical compounds in meat and fish. Critical Review of Food Science and Nutrition 61, 1163-1183.
  • [20] Shafique B., M.M.A.N. Ranjha, M.A. Murtaza, N. Walayat, A. Nawaz, W. Khalid, S. Mahmood, M. Nadeem, M.F. Manzoor, K. Ameer et al. 2023. Recent trends and applications of nanoencapsulated bacteriocins against microbes in food quality and safety. Microorganisms, 11: 85.
  • [21] Silvaa S.M.P., S.C. Ribeiro, J.A. Teixeira, C.C.G. Silvaa. 2022. Application of analginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT – Food Science and Technology 153: 112486.
  • [22] Slima S.B., N. Ktari, M. Triki, I. Trabelsi, A. Abdeslam, H. Moussa, I. Makni, A.M. Herrero, F. Jiménez-Colmenero, C. Ruiz-Capillas, R.B. Salah. 2018. Effects of probiotic strains, Lactobacillus plantarum TN8 and Pediococcus acidilactici, on microbiological and physico-chemical characteristics of beef sausages. LWT – Food Science and Technology, 92: 195-203.
  • [23] Ünlü G., B. Nielsen, C. Ionita. 2016. Inhibition of Listeria monocytogenes in hot dogs by surface application of freeze-dried bacteriocin-containing powders from Lactic Acid Bacteria. Probiotics and Antimicrobial Proteins 8: 102-110.
  • [24] Wang Y., J. Wu, M. Lv, Z. Shao, M. Hungwe, J. Wang, X. Bai, J. Xie, Y. Wang, W. Geng. 2021. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Frontiers in Bioengeneering and Biotechnology, 129: 612285.
  • [25] Wang Q., K. Zhang, M. Li, H. Liu, B. Kong, Q. Chen. 2024. Bioprotective potential of Latilactobacillus sakei and Latilactobacillus curvatus in smoked chicken legs with modified atmosphere packaging. Food Control 164: 110558.
  • [26] Woraprayote W., Y. Malila, S. Sorapukdee, A. Swetwiwathana, S. Benjakul, W. Visessanguan. 2016. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Science, 120: 118-132.
  • [27] Wu J., M. Zang, S. Wang, B. Zhao, J. Bai, C. Xu, Y. Shi, X. Qiao. 2023. Nisin: From a structural and meat preservation perspective. Food Microbiology, 111: 104207.
  • [28] Yoon J.W., S.S. Kang. 2020. In vitro antibiofilm and anti-inflammatory properties of bacteriocins produced by Pediococcus acidilactici against Enterococcus faecalis. Foodborne Pathogens and Disease 17: 764-771.
  • [29] Yousefi, M., N. Khorshidian and H. Hosseini. 2020. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Frontiers in Nutrition 7:577287.
  • [30] Zapaśnik A., B. Sokołowska, M. Bryła. 2022. Role of lactic acid bacteria in food preservation and safety. Foods, 11:1283.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a8d0182-4f71-47bf-bb46-9a61acbf82b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.