PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Research on application of ground penetrating radar array method based on plane beam signal in diferent geological models

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The traditional common-offset ground penetrating radar method measures point by point along the survey line with a single transmitter and a single receiver. Due to the influence of the antenna radiation power and the low-pass filtering function of the earth medium, an intense amplitude gain cannot be obtained when the signal is intercepted. This article addresses a plane beam signal ground penetrating radar array observation method based on high radiation power gain. The transmitting antenna array simultaneously excites the pulse signal with the same center frequency. All the transmitted signals interfere with each other at the near surface to form a plane beam signal, and the electromagnetic energy is superimposed mutually to increase the radiation power. We applied the plane beam signal ground penetrating radar array method to different geological models constructed by the finite difference time-domain (FDTD) algorithm for numerical simulation in this research. Since there are various offsets in the array ground penetrating radar observation method, we introduce a composite frequency shift-perfect matching layer (CFS-PML) based on the recursive convolution method as the absorbing boundary condition. It eliminates the problem of secondary refection caused by the angle variation of the incident wave. The research result shows that the plane beam signal illuminates the target uniformly in space, can eliminate the discontinuity in profile data caused by the directivity of the antenna, improve the stability and quality of the echo signal, and enrich the target response parameters.
Czasopismo
Rocznik
Strony
2241--2260
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
autor
  • School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China
  • State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing, China
  • Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, Beijing, China
autor
  • School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China
autor
  • School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China
autor
  • School of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China
Bibliografia
  • 1. An Q, Hoorfar A, Zhang WJ, Li SY, Wang JQ (2019) Range coherence factor for down range sidelobes suppression in radar imaging through multilayered dielectric media. IEEE Access 7:66910–66918. https://doi.org/10.1109/ACCESS.2019.2911693
  • 2. Annan AP (2002) GPR—History, trends, and future developments. Subsurf Sens Technol Appl 3(4):253–270. https://doi.org/10.1023/A:1020657129590
  • 3. Arabi O, See CH, Ullah A, Ali N, Liu B, Abd-Alhameed R, McEwan NJ, Excell PS (2020) Compact Wideband MIMO diversity antenna for mobile applications using multi-layered structure. Electronics 9(8). https://doi.org/10.3390/electronics9081307
  • 4. Bai H, Sindield JV (2020) Improved background and clutter reduction for pipe detection under pavement using Ground Penetrating Radar (GPR). J Appl Geophys 172:172. https://doi.org/10.1016/j.jappgeo.2019.103918
  • 5. Bai ZM, Ma XK, Xu ZS, Liu Q (2013) An efficient application of PML in fourth-order precise integration time domain method for the numerical solution of Maxwell’s equations. COMPEL Int J Comput Math Electrical Electronic Eng 33(1–2):116–125. https://doi.org/10.1108/COMPEL-10-2012-0272
  • 6. Bakunov MI, Zhukov SN (2012) Transformation of electromagnetic wave polarisation by the resonance in a thin solid-plasma film. J Electromagnetic Waves Appl 10(6):791–802. https://doi.org/10.1163/156939396X00784
  • 7. Bianchi G, Garder RJ, Gronchi P, Kiderlen M (2020) Rearrangement and polarisation. Adv Math 374. https://doi.org/10.1016/j.aim.2020.107380
  • 8. Carcione JM, Lenzi G, Valle S (1999) GPR modelling by the Fourier method: improvement of the algorithm. Geophys Prospect 47:1015–1029. https://doi.org/10.1046/j.1365-2478.1999.00151.x
  • 9. Chai M, Xiao T, Zhao G, Liu QH (2007) A hybrid PSTD/ADI-CFDTD method for mixed-scale electromagnetic problems. IEEE Trans Antennae Propagation 55(5):1398–1406. https://doi.org/10.1109/TAP.2007.895630
  • 10. Chilton RA, Lee R (2007) The discrete origin of FETD-Newmark late time instability, and a correction scheme. J Comput Phys 224(2):1293–1306. https://doi.org/10.1016/j.jcp.2006.11.021
  • 11. Diamanti N, Giannopoulos A (2009) Implementation of ADI-FDTD subgrids in ground penetrating radar FDTD models. J Appl Geophys 67(4):309–317. https://doi.org/10.1016/j.jappgeo.2008.07.004
  • 12. Feng DS, Dai QW (2011) GPR numerical simulation of full wave field based on UPML boundary condition of ADI-FDTD. NDT E Int 44(6):495–504. https://doi.org/10.1016/j.ndteint.2011.05.001
  • 13. Feng DS, Yang LY, Wang X (2016) The unsplit convolutional perfectly matched layer absorption performance analysis of evanescent wave in GPR FDTD forward modeling. Chin J Geophys 59(12):4733–4746. https://doi.org/10.6038/cjg20161232
  • 14. Gazit E (1988) Improved design of the Vivaldi antenna. IEEE Proc H 135(2):89–92. https://doi.org/10.1049/ip-h-2.1988.0020
  • 15. Howlader M, Sattar TP (2015) FDTD Based numerical framework for ground penetrating radar simulation. Progress Electromagnetics Res M 44:127–138. https://doi.org/10.2528/PIERM15090304
  • 16. Huang YQ, Zhang JZ, Liu QH (2011) Three-dimensional GPR ray tracing based on wavefront expansion with irregular cells. IEEE Trans Geosci Remote Sens 49(2):679–687. https://doi.org/10.1109/TGRS.2010.2061856
  • 17. Knott P (2003) Antennenmodellierung und Diagrammsynthese zur Systemanalyse von konformen Gruppenantennen. Frequenz 57(7–8):147–151. https://doi.org/10.1515/FREQ.2003.57.7-8.147
  • 18. Kundu S (2020) A compact uniplanar ultra-wideband frequency selective surface for antenna gain improvement and ground penetrating radar application. Int J RF Microw Comput Aided Eng. https://doi.org/10.1002/mmce.22363
  • 19. Lacanna G, Ripepe M (2020) Modeling the acoustic flux inside the magmatic conduit by 3D‐FDTD Simulation. J Geophysical Res Solid Earth 125(6). https://doi.org/10.1029/2019JB018849
  • 20. Li ZH, Huang QH (2014) Application of the complex frequency shifted perfectly matched layer absorbing boundary conditions in transient electromagnetic method modeling. Chin J Geophys 57(4):1292–1299. https://doi.org/10.6038/cjg20140426
  • 21. Liu SX, Feng YQ, Fu L, Wang W, Wang YX (2012) Advances and numerical simulation of airborne ground penetrating radar. Prog Geophys 27(2):727–735. https://doi.org/10.6038/j.issn.1004-2903.2012.02.040
  • 22. Liu QH (1997) The Pseudospectral Time-Domain (PSTD) method: a new algorithm for solutions of Maxwell's Equations. AP-S International Symposium (Digest) (IEEE Antennae and Propagation Society) 1(1): 122–125. https://doi.org/10.1109/APS.1997.630102
  • 23. Løseth LO, Ursin B (2007) Electromagnetic fields in planarly layered anisotropic media. J Geophys Int 170(1):44–80. https://doi.org/10.1111/j.1365-246X.2007.03390.x
  • 24. Oyan MJ, Hamran S, Hanssen L et al (2012) Ultrawideband gated step frequency ground-penetrating radar. IEEE Trans Geosci Remote Sens 50(1):212–220. https://doi.org/10.1109/TGRS.2011.2160069
  • 25. Raza A, Lin WB, Chen YZ, Zhang YT, Hassan TC, Sharif AB (2020) Wideband tapered slot antenna for applications in ground penetrating radar. Microw Opt Technol Lett 62(7):2562–2568. https://doi.org/10.1002/mop.32338
  • 26. Sun QT, Zhang RR, Zhan QW, Liu QH (2019) 3-D implicit–explicit hybrid finite difference/spectral element/finite element time domain method without a buffer zone. IEEE Trans Antennae Propagation 67(8):5469–5476. https://doi.org/10.1109/TAP.2019.2913740
  • 27. Tian K, Huang J, Li Z, Li N, Li Q (2013) Recursive convolution method for implementing complex frequency-shifted PML absorbing boundary condition. J Jilin University (earth Science Edition) 43(3):1022–1032
  • 28. Wang R, Yuan XJ (2014) MIMO multiway relaying with pairwise data exchange: a degrees of freedom perspective. IEEE Trans Signal Process 62(20):5294–5307. https://doi.org/10.1109/TSP.2014.2347924
  • 29. Xu ZH, Li WM, Ren W (2011) Array antenna analysis and synthesis. Beihang University Press, Beihang University, Beijng
  • 30. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennae Propagation 14(5):302–307. https://doi.org/10.1109/TAP.1966.1138693
  • 31. Zeng XX, McMechan GA, Cai J, Chen HW (1995) Comparison of ray and Fourier methods for modeling monostatic ground-penetrating radar profiles. Geophysics 60(6):1727–1734. https://doi.org/10.1190/1.1443905
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a8a5f8c-a8cb-400d-a9c2-10de84c82e82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.