PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

System reliability optimization: A fuzzy multi-objective genetic algorithm approach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja niezawodności systemu: metoda rozmytego algorytmu genetycznego do optymalizacji wielokryterialnej
Języki publikacji
EN
Abstrakty
EN
System reliability optimization is often faced with imprecise and conflicting goals such as reducing the cost of the system and improving the reliability of the system. The decision making process becomes fuzzy and multi-objective. In this paper, we formulate the problem as a fuzzy multi-objective nonlinear program. A fuzzy multi-objective genetic algorithm approach (FMGA) is proposed for solving the multi-objective decision problem in order to handle the fuzzy goals and constraints. The approach is able flexible and adaptable, allowing for intermediate solutions, leading to high quality solutions. Thus, the approach incorporates the preferences of the decision maker concerning the cost and reliability goals through the use of fuzzy numbers. The utility of the approach is demonstrated on benchmark problems in the literature. Computational results show that the FMGA approach is promising.
PL
Często spotykanym problemem w optymalizacji niezawodności systemu są niedokładnie określone i sprzeczne cele, takie jak zmniejszenie kosztów systemu przy jednoczesnej poprawie jego niezawodności. Proces podejmowania decyzji staje się wtedy rozmyty i wielokryterialny. W niniejszej pracy, sformułowaliśmy ten problem jako rozmyty wielokryterialny program nieliniowy (FMOOP). Zaproponowaliśmy metodę rozmytego wielokryterialnego algorytmu genetycznego (FMGA), która pozwala rozwiązać wielokryterialny problem decyzyjny z uwzględnieniem rozmytych celów i ograniczeń. Podejście to jest uniwersalne, co pozwala na rozwiązania pośrednie, prowadzące do rozwiązań wysokiej jakości. Metoda uwzględnia preferencje decydenta w zakresie celów związanych z kosztami i niezawodnością poprzez wykorzystanie liczb rozmytych. Użyteczność FMGA wykazano na przykładzie wzorcowych problemów z literatury. Wyniki obliczeń wskazują, że podejście FMGA jest obiecujące.
Rocznik
Strony
400--406
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Faculty of Engineering and the Built Environment University of Johannesburg P. O. Box 524, Bunting Road, Auckland Park 2006, South Africa
Bibliografia
  • 1. Abbass HA. Speeding up backpropagation using multi-objective evolutionary algorithms. Neural Computation 2003; 15 (11): 2705-2726.
  • 2. Anchor KP, Zydallis JB, Gunsch GH, Lamont GB. 2003. Different multi-objective evolutionary programming approaches for detecting computer network attacks. In Carlos M. Fonseca, Peter J. Fleming, Eckart Zitler, Kalyanmoy Deb and Lothar Thiele (editors), Evolutionary Multi-criterion Optimization. Second International Conference, EMO 2003. Springer. Lecturer Notes in Computer Sceince 2003; 2632: 707-721.
  • 3. Anderson J. Applications of a multi-objective genetic algrorithm to engineering design problems. In Carlos M. Fonseca, Peter J. Fleming, Eckart Zitler, Kalyanmoy Deb and Lothar Thiele (editors), Evolutionary Multi-criterion Optimization. Second International Conference, EMO 2003. Springer. Lecturer Notes in Computer Sceince 2003; 2632: 737-751.
  • 4. Bag S, Chakraborty D, Roy AR. A production inventory model with fuzzy demand and with flexibility and reliability considerations. Journal of Computers and Industrial Engineering 2009; 56: 411-416.
  • 5. Bellman R, Zadeh L. Decision making in a fuzzy environment. Management Science 1970; 17: 141–164.
  • 6. Bing L, Meilin Z, Kai X. A practical engineering method for fuzzy reliability analysis of mechanical structures. Reliability Engineering and System Safety 2000; 67 (3): 311–315.
  • 7. Cai KY, Wen CY, Zhang ML. Fuzzy variables as a basis for a theory of fuzzy reliability in the possibility context. Fuzzy Sets and Systems 1991; 42: 145–172.
  • 8. Chen L. Multiobjective design optimization based on satisfaction metrics. Engineering Optimization, 33: 601–617, 2001.
  • 9. Chen SM, Fuzzy system reliability analysis using fuzzy number arithmetic operations Fuzzy Sets and Systems 1994; 64 (1): 31–38.
  • 10. Chen TC, You PS. Immune algorithm based approach for redundant reliability problems. Computers in Industry 2005; 56: 195–205.
  • 11. Coit DW, Smith AE. Reliability optimization of series-parallel systems using genetic algorithm. IEEE Transactions on Reliability 1996, R-45, (2): 254-260.
  • 12. Delgado M, Herrera F, Verdegay JL, Vila MA. Post optimality analysis on the membership functions of a fuzzy linear problem. Fuzzy Sets and Systems 1993; 53: 289-297.
  • 13. Duque O, Morifiigo D. A fuzzy Markov model including optimization techniques to reduce uncertainty. IEEE Melecon 2004; 3: 841–844.
  • 14. Garg H, Sharma SP. Multi-objective reliability-redundancy allocation problem using particle swarm optimization. Computers & Industrial Engineering 2013; 64: 247-255.
  • 15. Garg H, Sharma SP. Stochastic behavior analysis of industrial systems utilizing uncertain data.5 ISA Transactions, vol. 51, no. 6, pp.752–62, 2012.
  • 16. Goldberg DE. Genetic Algorithms: In Search, Optimization & Machine Learning, Addison-Wesley, Inc., MA, 1989.
  • 17. Hikita M. Nakagawa Y. and Harihisa H. Reliability optimization of systems by a surrogate constraints algorithm. IEEE Transactions on Reliability 1992, R-41 (3): 473–480.
  • 18. Holland JH. Adaptation in Natural and Artificial System, University of Michigan Press, Ann Arbor, MI, 1975.
  • 19. Hsieh YC. Chen TC, Bricker DL. Genetic algorithm for reliability design problems. Microelectronics and Reliability 1998; 38 (10): 1599-605.
  • 20. Huang HZ, Fuzzy multi-objective optimization decision-making of reliability of series system. Microelectronics Reliability 1997; 37 (3):447–449.
  • 21. Huang HZ, Gu YK, Du X. An interactive fuzzy multi-objective optimization method for engineering design. Engineering Applications of Artificial Intelligence 2006; 19(5): 451–460.
  • 22. Huang HZ, Tian ZG, Zuo MJ. Intelligent interactive multi-objective optimization method and its application to reliability optimization. IIE Transactions 2005, 37 (11): 983–993.
  • 23. Jozefowiez N, Glover F, Laguna M. Multi-objective meta-heuristics for the traveling salesman problem with profits. Journal of Mathematical Modelling and Algorithms 2008; 7 (2): 177-195.
  • 24. Kuo W, Prasad VR. An annotated overview of system-reliability optimization. IEEE Transaction on Reliability 2000; 49 (2): 176–187,.
  • 25. Mahapatra GS, Roy TK. Fuzzy multi-objective mathematical programming on reliability optimization model. Applied Mathematics and Computation, vol. 174, pp.643–659, 2006.
  • 26. Michalewicz Z. Genetic Algorithms + Data Structures = Evolutionary Programs. Springer, 1996.
  • 27. Mohanta DK, Sadhu PK, Chakrabarti R. Fuzzy reliability evaluation of captive power plant maintenance scheduling incorporating uncertain forced outage rate and load representation. Electric Power Systems Research 2004; 72: 73–84.
  • 28. Onisawa T. An application of fuzzy concepts to modeling of reliability analysis. Fuzzy Sets and Systems 1990; 37: 267–286.
  • 29. Sakawa M, Fuzzy Sets and Interactive Multi-objective Optimization, Plenum Press, New York, 1993.
  • 30. Slowinski R. Fuzzy sets in decision analysis. Operations research and statistics. Boston: Kluwer Academic Publishers 1998.
  • 31. Wu P, Gao L, Zou D, Li S. An improved particle swarm optimization algorithm for reliability problems. ISA Transactions 2011; 50: 71-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a8a310b-32d7-4e1b-96b6-e2fbce9ac812
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.