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1. Introduction

System reliability optimization is a very important subject matter 
in industry. Reliable systems are essential for sustainable productivity 
and competitiveness in modern industry [22, 24–25, 31]. To maximize 
productivity, industrial systems, such as manufacturing systems, must 
be available and operational as much as possible. Nevertheless, since 
industrial systems consist of a number of components, the ultimate 
probability of system survival directly depends on the characteristics 
of the constituent components. Hence, system failure is inevitable. 
As such, it is essential to enhance system reliability through suitable 
reliability optimization methods, so as to improve the overall system 
productivity. Developing effective methods for system reliability en-
hancement is imperative.

The ever-increasing need for highly reliable systems necessitates 
the search for improved methods for system reliability optimization. 
In system reliability design, two typical approaches can be used to 
enhance system reliability: (i) adding redundant components in the 
subsystems of the system, and (ii) increasing the reliability of the 
components that constitute the system.

Industrial systems are designed under several restrictions, includ-
ing cost, weight, and volume of the resources. With limited resourc-
es, the major aim is to find a trade-off between reliability and other 
resource constraints [22]. One of the feasible ways is to maximize 
system reliability via redundancy and component reliability choices, 
a problem called reliability-redundancy allocation problem [24]. 
However, in designing a highly reliability system, the main problem 

is to find a trade-off between reliability enhancement and resource 
consumption. This calls for an application of a suitable multi-criteria 
approach. Various multi-criteria programming approaches and multi-
criteria solution approaches have been applied on different problems 
in the literature [1–3, 23]. 

In the real world, system reliability optimization problems are in-
undated with a number of uncertainties and difficulties. This is due to 
the reasons that: (i) the management goals and the constraints are of-
ten characterised with some imprecision or vagueness; (ii) the coeffi-
cients or parameters as understood by the decision maker may be char-
acterized with some vagueness; and, (iii) the available historical data, 
collected under specific conditions, are often imprecise and vague. In 
addition, variability and changes in the manufacturing processes that 
produce the components of the systems lead to uncertainties in com-
ponent reliability. Probabilistic approaches, which essentially deal 
with uncertainty arising from randomness, cannot adequately address 
inherent uncertainties in the data. While probabilistic approaches deal 
with uncertainties arising from randomness, fuzzy approaches seek to 
address uncertainties that arise from vagueness of human judgment 
and imprecision due to system complexity [4–6, 13–15, 27]. As a re-
sult, the concept of fuzzy reliability is more promising [7–9, 28]. 

Bellman and Zadeh [5] introduced the fuzzy optimization ap-
proach that utilizes aggregation operators for combining fuzzy goals 
and fuzzy decision space. Since the inception of the fuzzy optimization 
approach, a number of methods and applications have been proposed 
to solve optimization problems that involve vagueness and ambigu-
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ity [12, 20, 21, 30]. These approaches treat parameters (coefficients) 
as fuzzy numerical data. Apart from the fuzziness of the system reli-
ability problem, the presence of conflicting, nonlinear and ambiguous 
objectives further complicates the problem. In such a fuzzy environ-
ment, with multiple objectives, simultaneous reliability maximization 
and cost minimization calls for a cautious trade-off approach. Thus, 
finding the optimal solution is almost impossible. Metaheuristic and 
other intelligent methods are a potential application method for such 
complex problems [11, 10, 26]. Therefore, the most appropriate pro-
cedure is to cautiously find a set of solutions that satisfy the decision 
maker’s expectations to the highest possible degree. Clearly, this calls 
for an interactive fuzzy multi-objective optimization approach which 
incorporates the preferences and expectations of the decision maker, 
allowing for human (expert) judgment. Iteratively, it becomes possi-
ble to obtain the most satisfactory solution in a fuzzy environment.

In view of the above issues, the purpose of this paper is to address 
the problem of system reliability optimization in a fuzzy environment 
characterized with multiple conflicting objectives. Therefore, our spe-
cific objectives are as follows:

to develop a fuzzy multiple-objective nonlinear programming (1)	
model for the reliability optimization problem;
to use an aggregation method to transform the fuzzy model to (2)	
a single-objective optimization problem; and,
to use a global metaheuristic optimization method to obtain a (3)	
set of acceptable solutions.

In our current study, we develop a fuzzy multi-objective genetic 
algorithm (FMGA) which utilizes a fuzzy theory based method to 
evaluate the objective functions represented as membership functions. 
We use the max-min operator to aggregate the membership functions 
of the objective functions while incorporating the decision maker’s 
judgment. In this respect, we define our notations and assumptions 
as follows.

Nomenclature:
m	 the number of subsystems in the system
ni	 the number of components in subsystem i, 1 i m≤ ≤
n	 ≡(n1, n2, …, nm), the vector of the redundancy (number of 

redundant components) allocation for the system
ri	 the reliability of each component in subsystem i, 

1 i m≤ ≤
r	 ≡(r1, r2, …, rm), the vector of the component reliabilities 

for the system
qi	 =1 - ri, the failure probability of each component in sub-

system i, 1 i m≤ ≤

Ri(ni)	 =1 ,in
iq− the reliability of subsystem i, 1 i m≤ ≤

Rs	 the system reliability
gi	 the ith constraint function
wi	 the weight of each component in subsystem i, 1 i m≤ ≤

vi	 the volume of each component in subsystem i, 1 i m≤ ≤

ci	 the cost of each component in subsystem i, 1 i m≤ ≤
V	 the upper limit on the sum of the subsystems’ products of 

volume and weight
C	 the upper limit on the cost of the system
W	 the upper limit on the weight of the system
b	 the upper limit on the resource

Assumptions:
The availability of the components is unlimited;(1)	
The weight and product of weight and square of the volume of (2)	
the components are deterministic;
The redundant components within the individual subsystems (3)	
are identical;

Failures of individual components are independent;(4)	
All failed components will not damage the system and are not (5)	
repaired.

2. System reliability optimization

The system reliability optimization problem is a maximization 
problem subject to multiple non-linear constraints. In this connection, 
the problem can be expressed as a mixed integer nonlinear program-
ming problem. In this study, we present a reliability redundancy prob-
lems commonly found in the literature, with a particular emphasis 
on the series system [22, 24]. The series system reliability problem 
consists of five subsystems as reported in the literature as shown in 
Fig. 1.

Following our notation proposed in section 1, the system re-
liability optimization problem can be formulated as a nonlinear mixed 
integer program:
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where, ri, and ni, are the reliability and the number of components 
in the ith subsystem respectively; f(∙) is the objective function for 
the overall system reliability; g(∙) is the constraint function; m si the 
number of subsystems. The primary goal is to determine the number 
of components and their reliability in each subsystem so that the over-
all system reliability is maximized. Thus, the problem falls in the cat-
egory of constrained non-linear mixed integer optimization problems. 
The next section presence the proposed fuzzy multi-objective optimi-
zation approach, based on genetic algorithm.

3. Fuzzy multi-objective optimization approach

In a fuzzy environment, the objective goal, the constraints and the 
consequences of the decision taken are inherently imprecise. Thus, 
in practice, the decision maker seeks to consider a trade-off between 
reliability, cost, weight and volume. For instance, a common approach 
may be to simultaneously maximize reliability and minimize cost. 
In this connection, the multi-objective formulation is obtained by 
transforming constraints to objective functions, such that reliability 
and other costs functions can be optimized jointly. This is achieved 
through the use of membership functions for the objective functions. 
This makes the approach more applicable and adaptable to the real life 
human decision process. Therefore, the fuzzy multi-objective optimi-
zation problem (FMOOP) can generally be represented as follows;

Fig. 1. The series system
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where, 1 2( , ,..., )T
Qx x x x=  is a vector of decision variables that opti-

mize a vector of fuzzy objective functions, 

1 2( ) { ( ), ( ),..., ( )}df x f x f x f x=     over the decision space X; 

1 2( ), ( ),..., ( )df x f x f x    are d individual objective functions; l
qx  and 

u
qx  are lower and upper bounds on decision variable xq, respectively. 

Here, we use the symbol “~” to denote a fuzzy function or operator.

3.1.	 Membership functions

The notion of fuzzy set theory permits gradual assessment of 
membership, defined in terms of a suitable membership function that 
maps to the unit interval [0,1]. To date, several membership functions, 
such as Generalized Bell, Gaussian, Triangular and Trapezoidal have 
been used to represent fuzzy membership in a several applications. 
Though various functions can be used, it has been shown that linear 
membership functions can provide equally good quality solutions with 
much ease [29]. The triangular and trapezoidal membership functions 
have widely been recommended [8, 12, 29]. In this study, therefore, 
we use linear functions to define the fuzzy membership functions of 
the objective functions.

In this study, we assume that an expert user has a range of ac-
ceptable feasible values of each objective functions. However, we 
further assume that there is a lower and upper limit to that range of 
acceptable objective function values, as specified by the expert user. 
Let mt and Mt denote the minimum and maximum acceptable values 

of each objective function ( )tf x , 1,2,...,t h= , where h is the number 

of objective functions. Further, let 
tfµ  denote the membership func-

tion corresponding to the objective function ft. Then, the membership 
function corresponding to minimization and maximization of specific 
objective functions can be defined in terms of degree of satisfaction. 
Fig. 2 illustrates the linear membership functions, both for minimiza-
tion as well as for maximization problems. We define the membership 
functions for both situations.

When the objective is concerned with minimization, the linear 
membership function can be formulated as in the following expres-
sion:
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where, mt and Mt denote the minimum and maximum acceptable fea-

sible values of each objective function. Clearly, the function ( )
tf xµ

is monotonically decreasing in ( )tf x . On the other hand, when the 
objective is about maximization, the membership function can be de-
fined as follows:
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It can be seen from this analysis that ( )
tf xµ is a monotonically 

increasing function of ft(x). The next step is to formulate the corre-
sponding crisp model. The use of fuzzy evaluation in FMGA allows 
the algorithm to accept inferior which would otherwise be infeasible 
when using conventional crisp formulation. The advantage of this ap-
proach is that it makes the algorithm robust enough to cope with any 
infeasibility. Allowing the FMGA to pass through inferior solutions 
gives the algorithm speed and flexibility, which ultimately improves 
the search power of the approach.

3.2.	 Corresponding crisp model

In practice, it is desirable to consider the imprecise management 
or decision maker’s preferences in our formulation. Therefore, to 
incorporate the decision maker’s preferences and to enhance the in-
teractive flexibility of the model, a set of user-defined weights w = 
{w1, w2,…,wh} are introduced. We convert the multi-objective system 
reliability optimization problem into a single objective optimization 
problem [14]:
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where, 
1 2

( ) { ( ), ( ),..., ( )}
t hf f f fx x x xµ µ µ µ= is a set of fuzzy regions 

that satisfy the objective functions; x is a vector of decision variables, 
λt denotes the degree of satisfaction of the tth objective, wt denotes the 
weight of the tth objective function as suggested by the expert judg-
ment of the user or decision maker, and the symbol “˄” is the aggre-
gate min operator or the intersection operator. For instance, the ex-
pression (λ1(x)/w1)˄1 gives the minimum between 1 and λ1(x)/w1. 
Though the values of λ1(x) are in the range [0,1], the value of λ1(x)/w1 
may exceed 1, howbeit, by the min operator the final value of (λ1(x)/
w1)˄1 will always lie in [0,1]. We use a metaheuristic approach to 
solve problem P3.

3.3.	 Genetic algorithm approach

Genetic Algorithm (GA) is a stochastic global optimization tech-
nique that attempts to evolve a population of candidate solutions by 
giving preference of survival to quality solutions, whilst allowing 
some low quality solutions to survive in order to maintain diversity in 
the population [16, 18]. Each candidate solution is coded into a string 
of digits, called chromosomes. New offspring are obtained from prob-
abilistic genetic operators, such as selection, crossover, mutation, and 

Fig. 2. Fuzzy membership function for ft(x)
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inversion [16]. A comparison of new and old (parent) candidates is 
done based on a given fitness function, retaining the best performing 
candidates into the next population. Thus, characteristics of candidate 
solutions are passed from generation to generation through probabi-
listic selection, crossover, and mutation. The general flow of the GA 
approach is presented in Fig 3. The metaheuristic is represented as an 
iterative procedure consisting of sub-procedures: initialization, evalu-
ation, selection, crossover, and mutation.

3.4.	 Genetic encoding scheme

In our FMGA implementation for the system reliability problem, 
the genetic chromosome uses the variable vectors n and r. Thus, we 
use a real-coded genetic encoding scheme, where the integer variable 
ni is coded as a real variable and transformed to the nearest integer 
value upon evaluating the objective function.

3.5.	 Initialization and evaluation

In the initialization procedure, an initial population of the desired 
size, pop, is generated randomly from the solution space. FMGA then 
computes the objective function for each string according to the ob-
jective function represented in model P3. The value of the objective 
function is always in the range [0,1].

3.6.	 Selection and recombination

A number of selection strategies exist in literature [13]. In this 
study, we adopted the remainder stochastic sampling without replace-
ment. By this strategy, each chromosome j is selected and stored in 
the mating pool according to the expected count ej, represented by 
the expression;

	 1

j
j pop

jj

f
e

f pop=

=
∑

	 (3)

where, fj is the objective function value of the jth chromosome. Each 
chromosome receives copies equal to the integer part of ei, that is, [ei], 
while the fractional part is treated as success probability of obtaining 
additional copies of the same chromosome into the mating pool. The 
crossover operator is then applied to selected parent chromosomes for 
the purpose of exchanging genetic information between the selected 
chromosomes, thereby producing new offspring. Here, we use the 
arithmetic crossover operator as in [26] to define a linear combination 
of two chromosomes. A crossover probability of 0.42 was assumed in 
this application. For instance, let p1 and p2 denote the selected parents, 
and α represent a random value in the range [0,1], then the resulting 
offspring, q1 and q2, are given by the following expression:

	 1 1 2
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3.7.	 Mutation operator

As generations proceed, the population converges to a common 
solution, which may lead to result in pre-mature convergence. To curb 
premature convergence, and to maintain population diversity, a mu-
tation operator is applied to every new chromosome, at a very low 
probability. In our application, we used a uniform mutation with a 
mutation probability of 0.032.

3.8.	 Replacement

In every generation, new offspring are created. The new offspring 
may be better or worse than the preceding generation. As such, the 
non-performing individuals are replaced with better ones using a re-
placement strategy. According to Goldberg (1979) [16], some of the 
replacement strategies found in the literature include probabilistic re-
placement, crowding strategy, and elitist strategy. In this application, 
we a combination of these strategies was implemented.

3.9.	 Termination criteria

Two termination conditions are used to stop the FMGA iteration, 
that is, when the number of generations exceeds the preset maximum 
iterations, or when the average improvement in the fitness of the best 
solution over specific generations is less than a small number, which 
is assumed to be 10-6 in this application. The maximum generations 
was set at 500.

3.10.	 Overall FMGA procedure 

The overall structure of the FMGA for the system reliability prob-
lems consists of all the procedures discussed in the previous sections; 
that is, initialization, selection, evaluation, crossover, mutation, re-
placement, and termination. Fig. 4 presents the pseudo-code of the 
algorithm.

Fig. 3. Fuzzy multi-objective genetic algorithm approach

Algorithm 1: Pseudo code for FMGA
1: randomly generate initial population
Repeat
	 2: evaluation of fitness, objective: f(x), x = (x1, x2,…,xh)
	 3: selection strategy
	 4: crossover and mutation
	 5: replacement
	 6: advance population; oldpop = newpop
Until (termination criteria is satisfied)

Fig. 4. Pseudo code for the overall FMGA procedure
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The next section presents the comparative results of our FMGA 
computations based on the benchmark problems found in the litera-
ture [17, 19, 24, 31].

4.	 Numerical experiments

To evaluate the usefulness of our proposed FMGA for solving 
mixed integer reliability problems, the series reliability system illus-
trated in P1 will be solved using the approach. We use the parameter 
values in [19] and to define the specific instances of this problems as 
shown in Tables 1.

The parameters of the FMGA were set as follows: The crossover 
and mutation were set at 0.45 and 0.035, respectively. A two-point 
crossover was used in this application.  The population size was set to 
20. The maximum number of generations or iterations was set at 150. 
This implies that the termination criterion is either limited to a maxi-
mum number of iterations or to the order of the relative error set at 
10-6, whichever comes earlier. Specifically, whenever the best fitness 
f* at iteration t is such that |ft – f*| < ε is satisfied, then three best solu-
tions are selected; where ε is a small number equal to 10-6. The FMGA 
was implemented in JAVA, and the program was run 25 times, while 
selecting the best 3 solutions out of the converged population.

The FMOOP provided by formulation (P3) is used to solve bench-
mark problems in [19]. A fuzzy region of satisfaction is constructed 
for each objective function, that is, objective functions corresponding 
to system reliability, cost, volume, and weight, which are denoted by 
λ1, λ2, λ3, and λ4, respectively. By using the constructed membership 
functions together with their corresponding weight vectors, we obtain 
an equivalent crisp optimization formulation for our problem:
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The weight set ω = {ω1, ω2, ω3, and ω4} was selected in the range 
[0.2,1], where the values of the weights indicate the bias towards spe-
cific objectives as specified by the expert decision maker. In particu-
lar, the weight set ω = [1,1,1,1] implies that the expert user prefers 
that there should be no bias towards any objective goal, that is, there is 
no preference at all. Every other combination of weights implies that 
there is some bias towards one or more specific objectives, and the 
relative importance of objectives is ranked accordingly. For instance, 
with a weight set defined by ω = [1,0.5,0.5,0.5], the preference is bi-
ased towards the region that is closer to the objective corresponding to 
reliability than to the rest of the objectives that are equally ranked with 

weight value of 0.5. Therefore, the decision making process takes into 
account the decision maker’s preferences and choices based on expert 
opinion. In addition, the FMGA approach is a useful decision support 
tool that can provide a set of good solutions in an interactive man-
ner, rather than prescribe a single solution. Furthermore, the approach 
enables the decision maker to specify the minimum and maximum 
values of objective functions in terms of reliability, cost, volume, and 
weight, denoted by f1, f2, f3, and f4, respectively. Table 2 provides a 
list of the selected minimum and maximum values of the objective 
functions, for the series. This approach makes the FMGA algorithm 
more adaptable and flexible for addressing specific problem situations 
while accommodating the expert user’s managerial preferences. Com-
putational results and discussions are presented in the next section.

5. Results and Discussions

This section presents the comparative results of the numerical 
experiments. The best three FMGA solutions are compared with the 
results obtained by other algorithms in the literature, for the series, 
series-parallel and complex bridge systems. We compare our results 
with those in [19] and [31].

Table 3 shows the comparative numerical results in which the best 
three solutions of the problem are compared against solutions from 
the literature. The results indicate that the best three FMGA solutions 
are better than the solutions reported previously in [19, 31], particu-
larly in terms of system reliability. In terms of cost, the solutions are 
slightly less than the previously reported solutions; the difference in 
cost is, however, not significant. Though there are a few exceptional 
instances where the cost of the FMGA are slightly higher with differ-
ences in the order of 10-6, it can be seen that, overall, FMGA provides 
better solutions than the approaches reported previously. FMGA ap-
proach found high quality solutions, most of which are better than 
those previously recorded in the literature. In summary, the approach 
offers a number of practical advantages to the decision maker, includ-
ing the following:

FMGA addresses the imprecise and fuzzy characteristics of the •	
system reliability optimization problem;
The method address conflicting multiple objectives, giving a •	
trade-off between the objectives;
The approach accommodates the decision maker’s preferences •	
in its procedure;
The method gives a population of alternative solutions for the •	
decision maker, rather that prescribe a solution;
The method is practical, flexible and easily adaptable to spe-•	
cific problem situations.

In view of the above advantages, FMGA is a potentially useful ap-
proach that can be ffurther developed into a decision support tool for 
optimizing practical industrial system reliability situations.

6. Conclusions

In the real world, decision makers concerned with system reliabil-
ity optimization encounter problems of finding a judicious trade-off 
between maximizing reliability and minimizing cost to an acceptable 
degree of satisfaction. In such a fuzzy environment, the management 
goals and constraints are not known precisely. Moreover, the goals are 
often conflicting, which further complicates the reliability optimiza-

Table 1.	 Basic data used in series system

i 105αi βi wivi
2 wi V C W

1 2.330 1.5 1 7 110 175 200

2 1.450 1.5 2 8 110 175 200

3 0.541 1.5 3 8 110 175 200

4 8.050 1.5 4 6 110 175 200

5 1.950 1.5 2 9 110 175 200

Table 2.	 Minimum and maximum feasible values of objective functions

Series System

f1 f2 f3 f4

Mi 1 180 120 210

mi 0.6 60 5 100



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 3, 2014 405

Science and Technology

tion problem. One most viable and useful option is to us a fuzzy satis-
ficing approach that includes the preferences and expert judgments of 
the decision maker. We provided a multi-objective non-linear mixed 
integer program for addressing system reliability optimization prob-
lems. The fuzzy multi-objective model is transformed into a single-
objective model which uses a fuzzy evaluation method. Genetic al-
gorithm uses the fuzzy evaluation method to evaluate the fitness of 
individuals in each population at every generation. Numerical results 
demonstrate that the fuzzy multi-objective Genetic Algorithm ap-
proach is able to provide high quality solutions while accommodating 
the preferences of the user.

This study offers a useful contribution to decision makers in sys-
tem reliability design. Contrary to single-objective approaches which 
seek to optimize system reliability only. FMGA provides a trade-off 
between management goals. At design stage, the information required 
for system reliability design is imprecise and incomplete. To that ef-
fect, the problem becomes ill-structured such that reliance on expert 

information is inevitable. Using FMGA, the vagueness and impreci-
sion of the expert knowledge, at the design stage, can be addressed 
effectively while taking into account the multiple conflicting objec-
tives. Furthermore, FMGA provides a population of good alternative 
solutions in an interactive manner, giving the decision maker a wide 
choice of practicable solutions and an opportunity to consider other 
practical factors that cannot be included in the formulation. Overall, 
FMGA is a useful platform for decision support for system reliabil-
ity design when the parameters, the management goals, the design 
constraints, and the impact of the possible alternative actions are not 
precisely known.
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Table 3.	 Comparison of best-3 FMGA solutions with other algorithms

Best 3 FMGA Solutions Wu et al. [31] Hsieh et al.[19]

No. (ri: ni) (ri: ni) (ri: ni) (ri: ni)

1 (0.779401321:3) (0.77940279:3) (0.77939597:3) (0.78037307:3) (0.779427:3)

2 (0.871839015:2) (0.87181554:2) (0.87183716:2) (0.87178343:2) (0.869482:2)

3 (0.902877370:2) (0.90287257:2) (0.90288515:2) (0.90240890:2) (0.902674:2)

4 (0.711415792:3) (0.71141514:3) (0.71140318:3) (0.71147356:3 (0.714038:3)

5 (0.787779580:3) (0.78783097:3) (0.78780147:3) (0.78738760:3) (0.786896:3)

Rs 0.931682387 0.931682384 0.931682388 0.9316800 0.93157800

Cs 175.0000000 175.0000000 175.0000000 174.99899 174.878546

Ws 192.4810818 192.4810818 192.4810818 192.48108 192.481082

Vs 83.00000000 83.00000000 83.00000000 83.000000 83.0000000

Note: Bold indicates the best FMGA solution
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