Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Multiscale periodic homogenization is extended to an Orlicz-Sobolev setting. It is shown by the reiteraded periodic two-scale convergence method that the sequence of minimizers of a class of highly oscillatory minimizations problems involving convex functionals, converges to the minimizers of a homogenized problem with a suitable convex function.
Czasopismo
Rocznik
Tom
Strony
113--143
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
- University of Bamenda Higher Teacher’s Training College P.O. Box 39, Bambili, Cameroon
autor
- University of Yaounde I Ecole Normale Superieure de Yaounde, P.O. Box 47, Yaounde, Cameroon
autor
- Dipartimento di Scienze di Base ed Applicate per l’Ingegneria Sapienza - Universita di Roma Via Antonio Scarpa, 16 00161 Roma (RM), Italy
Bibliografia
- [1] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] G. Allaire, Homogenization and two scale convergence, SIAM J. Math. Anal. 23 (1992), 1482-1518.
- [3] G. Allaire, M. Briane, Multiscale convergence and reiterated homogenization, Proc. Royal Soc. Edin. 126 (1996), 297-342.
- [4] M. Amar, Two-scale convergence and homogenization on BV(Q), Asymptot. Anal. 16 (1998), no. 1, 65-84.
- [5] J.-F. Babadjian, M. Ba^a, Multiscale nonconvex relaxation and application to thin films, Asymptot. Anal. 48 (2006), 173-218.
- [6] M. Ba^a, I. Fonseca, The limit behavior of a family of variational multiscale problems, Indiana Univ. Math. J. 56 (2007), no. 1, 1-50.
- [7] M. Barchiesi, Multiscale homogenization of convex functionals with discontinuous integrand, J. Convex Anal. 14 (2007), no. 1, 205-226.
- [8] G. Carita, A.M. Ribeiro, E. Zappale, An homogenization result in W1 ,p x Lq, Journal of Convex Analysis, 18 (2011), no. 4, 1-28.
- [9] M. Chmara, J. Maksymiuk, Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations, J. Math. Anal. Appl. 456 (2017), no. 1, 457-475.
- [10] D. Cioranescu, A. Damlamian, R. De Arcangelis, Homogenization of quasiconvex integrals via the periodic unfolding method, SIAM J. Math. Anal. 37 (2006), no. 5, 1435-1453.
- 11] D. Cioranescu, A. Damlamian, G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal. 40 (2008), no. 4, 1585-1620.
- [12] N. Bourbaki, Integration, Hermann, Paris, 1966, Chapters 1-4.
- [13] N. Bourbaki, Integration, Hermann, Paris, 1967, Chapter 5.
- [14] G. Dal Maso, An Introduction to r-Convergence, Progress in Nonlinear Differential Equations and their Applications 8, Birkhauser Boston, Inc., Boston, MA, 1993.
- [15] W. Desch, R. Grimmer, On the wel lposedness of constitutive laws involving dissipation potentials, Trans. Amer. Math. Soc. 353 (2001), no. 12, 5095-5120.
- [16] R.E. Edwards, Functional Analysis, Holt-Rinehart-Winston, 1965.
- [17] R. Ferreira, I. Fonseca, Characterization of the multiscale limit associated with bounded sequences in bv , J. Convex Anal. 19 (2012), no. 2, 403-452.
- [18] R. Ferreira, I. Fonseca, Reiterated homogenization in bv via multiscale convergence, SIAM J. Math. Anal. 44 (2012), no. 3, 2053-2098.
- [19] M. Focardi, Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces, Rend. Istit. Mat. Univ. Trieste 29 (1997), no. 1-2, 141-161.
- [20] I. Fonseca, E. Zappale, Multiscale relaxation of convex functionals, Journal of Convex Analysis 10 (2003), no. 2, 325-350.
- [21] J. Fotso Tachago, H. Nnang, Two-scale convergence of integral functionals with convex, periodic and nonstandard growth integrands, Acta Appl. Math. 121 (2012), 175-196.
- [22] J. Fotso Tachago, H. Nnang, Stochastic-periodic convergence of Maxwel l’s equations with linear and periodic conductivity, Acta Math. Sinica 33 (2017), 117-152.
- [23] J. Fotso Tachago, H. Nnang, E. Zappale, Relaxation of periodic and nonstandard growth integrlas by means of two-scale convergence, Integral methods in science and engineering. Birkhauser/Springer, Cham. (2019), 123-131.
- [24] J. Fotso Tachago, H. Nnang, G. Gargiulo, E. Zappale, Multiscale homogenization of integral convex functionals in Orlicz-Sobolev settinng, Evolution Equations & Control Theory (2020), doi/10.3934/eect.2020067.
- [25] D. Lukkassen, G. Nguetseng, H. Nnang, P. Wall, Reiterated homogenization of nonlinear monotone operators in a general deterministic setting, Journal of Function Spaces and Applications 7 (2009), no. 2, 121-152.
- [26] M. Kalousek, Homogenization of incompressible generalized Stokes flows through a porous medium, Nonlinear Analysis 136 (2016), 1-39.
- [27] R. Kenne Bogning, H. Nnang, Periodic homogenisation of parabolic nonstandard monotone operators, Acta Appl. Math. 25 (2013), 209-229.
- [28] P.A. Kozarzewski, E. Zappale, Orlicz equi-integrability for scaled gradiants, Journal of Elliptic and Parabolic Equations 3 (2017), no. 1-2, 1-3.
- [29] P.A. Kozarzewski, E. Zappale, A Note on Optimal Design for Thin Structures in the Orlicz-Sobolev Setting, Integral Methods in Science and Engineering, vol. 1, Theoretical Techniques, Birkhauser/Springer, Cham, 2017.
- [30] W. Laskowski, H.T. Nguyen, Effective energy integral functionals for thin films in the Orlicz-Sobolev space setting, Demonstratio Math. 46 (2013), no. 3, 585-604.
- [31] W. Laskowski, H.T. Nguyen, Effective energy integral functionals for thin films with bending moment in the Orlicz-Sobolev space setting, Function spaces X, Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw 102 (2014), 143-167.
- [32] W. Laskowski, H.T. Nguyen, Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting, Discuss. Math. Differ. Incl. Control Optim. 36 (2016), no. 1, 7-31.
- [33] M.L. Mascarenhas, A.-M. Toader, Scale convergence in homogenization, Numerical Functional Analysis and Optimization 22 (2001), no. 1-2, 127-158.
- [34] S. Neukamm, Homogenization, linearization and dimension reduction in elasticity with variational methods, Ph.D. Thesis.
- [35] G. Nguetseng, A general convergent result for functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), 608-623.
- [36] G. Nguetseng, H. Nnang, Homogenization of nonlinear monotone operators beyond the periodic setting, Electron. J. Diff. Equ. (2003), 1-24.
- [37] G. Nguetseng, H. Nnang, J.L. Woukeng, Deterministic homogenization of integral functionals with convex integrands, Nonlinear Differ. Equ. Appl. 17 (2010), 757-781.
- [38] H. Nnang, Deterministic homogenization of nonlinear degenerated el liptic operators with nonstandard growth, Act. Math. Sinica 30 (2014), 1621-1654.
- [39] H. Nnang, Homogeneisation deterministe d’operateurs monotones, Sc. Fac. University of Yaounde 1, Yaounde, (2004).
- [40] A. Visintin, Towards a two-scale calculus, ESAIM Control Optim. Calc. Var. 12 (2006), no. 3, 371-397.
- [41] E. Zappale, A note on dimension reduction for unbounded integrals with periodic microstructure via the unfolding method for slender domains, Evol. Equ. Control Theory 6 (2017), no. 2, 299-318.
- [42] V.V. Zhikov, S.E. Pastukhova, Homogenization of monotone operators under conditions of coercivity and growth of variable order, Mathematical Notes 90 (2011), 48-63.
- [43] V.V. Zhikov, S.E. Pastukhova, On integral representation of r-limit functionals, J. Mathematical Sciences 217 (2016), 736-750.
- [44] V.V. Zhikov, S.E. Pastukhova, Homogenization and two-scale convergence in a Sobolev space with an oscilating exponent, Algebra i Analiz 30 (2018), no. 2, 114-144, (St. Petersburg Math. J. 30 (2019), no. 2, 231-251).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-0a868593-6654-4014-a918-a4c2de5f4d6b